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Abstract 

According to the „experimenter‟s regress‟, disputes about the validity of 

experimental results cannot be closed by objective facts because no 

conclusive criteria other than the outcome of the experiment itself exist for 

deciding whether the experimental apparatus was functioning properly or 

not. Given the frequent characterization of simulations as „computer 

experiments‟, one might worry that an analogous regress arises for 

computer simulations. The present paper analyzes the most likely 

scenarios where one might expect such a „simulationist‟s regress‟ to 

surface, and, in doing so, discusses analogies and disanalogies between 

simulation and experimentation. I conclude that, on a properly broadened 

understanding of robustness, the practice of simulating mathematical 

models can be seen to have sufficient internal structure to avoid any 

special susceptibility to regress-like situations. 

 

 

1. Introduction 

 

In this paper, I analyze the question of whether computer simulation is, in any special 

way, affected by what has variously been called the „experimenter‟s regress‟ (Collins 

1985) or „data-technique circles‟ (Culp 1995). Such a regress, it has been argued, may 

obtain when the only criterion scientists have for determining whether an 

experimental technique (or simulation) is „working‟ is the production of „correct‟ (i.e., 

expected) data. It may seem plausible to assume that techniques of computer 

simulation are especially prone to such regress-like situations, given that they are 

further removed from nature (in ways to be specified) than traditional 

experimentation. In public perception, too, there appears to be a gap between the trust 

that is placed in the experimental success of science, as opposed to its use of computer 

simulation methods (e.g., in predicting global climate change). 
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 This paper is organized as follows. Section 2 summarizes the main idea of the 

experimenter’s regress, as developed by Harry Collins (1985) on the basis of a case 

study in experimental astrophysics. Section 3 addresses the question of whether 

computer simulation can properly be thought of as a form of experimentation. Section 

4 identifies three clusters of scientific questions, where one might expect regress-like 

situations to arise in connection with computer simulation; this is followed, in Section 

5, by a reconstruction of the kind of systematic considerations that may fuel worries 

about what I refer to as the „simulationist‟s regress‟. Section 6 discusses a standard 

response, according to which the experimenter‟s regress can be dissolved whenever 

independent measurement techniques generate sufficiently „robust‟ data. However, as 

I argue in Section 7, in the case of simulation this standard response is not typically 

available, since in actual scientific practice, computer simulation studies do not 

always have real system as its targets; what is being „simulated‟ are (sometimes quite 

abstract) mathematical models. Section 8 develops a richer notion of robustness that 

pays special attention to the invariances (and failures of invariance) of the target as 

well as other rigorous results that hold for the corresponding mathematical models. I 

conclude, in Section 9, that while data-technique circles may sometimes pose a 

problem for both experimentation and simulation, the practice of simulating 

mathematical models has sufficient internal structure, and contributes new layers of 

assessment, such that it is no more prone to regress-like situations than traditional 

experimentation. 

 

 

2. The experimenter’s regress 

 

The experimenter‟s regress takes the form of a challenge to the standard view of 

experiments as providing an objective way for testing theories and hypotheses, and is 

based on the observation „that experiments, especially those on the frontiers of 

science, are difficult and that there is no criterion, other than the outcome, that 

indicates whether the difficulties have been overcome‟ (Collins 2005: 457). Unlike 

other well-known challenges to the possibility of crucial experiments (e.g., the 

Duhem-Quine thesis), the idea here is not that we can always save a hypothesis in the 

face of disconfirming evidence. Instead, the experimenter‟s regress casts doubt on the 
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possibility of saying objectively when a given empirical finding is confirming or 

disconfirming evidence in the first place.  

For a measurement to count as good evidence, Collins argues, we must assume 

that it was produced by a good instrument; but a good instrument is just one that we 

recognize as producing good results. This is seen as introducing a circularity: „we 

won‟t know if we have built a good detector until we have tried it and obtained the 

correct outcome. But we don‟t know what the correct outcome is until … and so on 

ad infinitum.‟ (Collins 1985: 84) Controversies about the validity of empirical 

measurements cannot be closed by objective facts because there are no conclusive 

criteria „other than the outcome of the experiment itself‟ that scientists could apply to 

decide whether the experimental apparatus was working properly or not (Collins 

2005: 457). In response to two of his critics, Collins identifies as the target of the 

experimenter‟s regress the popular belief that science „had eliminated disputes about 

standards in matters to do with observation of the natural world‟ (Collins 2002: 154). 

The experimenter‟s regress, in this sense, has an explicative role with respect to 

science: it is meant to show both „what it is that is taken to be the normal standard for 

experimental replication – getting the right result‟ and the source of that belief: 

namely, „the ready availability of a standard just in those cases where experimental 

replicability is not needed for proof‟ (Collins 2002: 155; italics original). 

In support of his claims, Collins draws on a detailed case study of the 

scientific debate surrounding the search for gravitational waves, which are predicted 

by general relativity theory and which would manifest themselves as minute 

disturbances of the measured gravitational constant. Collins analyzes how one 

scientist, Joseph Weber, built a detector – basically a massive piece of metal hooked 

up to extremely sensitive sensors that would detect any disturbance passing through 

the device – and then announced to the physics community that he had detected 

gravitational waves. Weber‟s claims were immediately contested by other scientists, 

some of whom built their own detectors (and could not corroborate the findings), 

whereas others disputed Weber‟s results by criticizing the validity of the procedures 

that Weber had used to calibrate his own instruments. To simplify somewhat, the 

dispute was never settled on objective grounds, but petered out slowly as Weber‟s 

track record as an experimenter came under fire and his reputation gradually eroded. 

In the end, Collins argues, when agreed-upon methods fail „scientists turn to a variety 

of criteria broadly similar to those used in making common-sense judgments in 
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ordinary life‟ – concerning reputation, institutional affiliation, track record, personal 

ties, conduct, and so forth. (Collins 2005: 458) Whether Collins‟s argument does 

indeed extend to „the practice of disputed science‟ (Collins 2002: 155) in general, has 

been a bone of contention for some time (see, Franklin 1994, for a wholesale 

critique); in the present paper, I shall limit myself to the question of whether computer 

simulation studies are especially prone to versions of Collins‟s regress argument. 

 

 

3. Simulation as ‘experimenting on theories’ 

 

Simulations as routine tools of scientific inquiry are relatively more recent than 

scientific models; however, like the use of scientific models, the practice of computer 

simulation has often been located (though not unproblematically) at an intermediate 

level between theory and experiment or experimental data. This is evident from the 

way practitioners of computer simulation themselves have, from early on, described 

what it is they are doing. In his study of the historical origins of „Monte Carlo‟ 

simulations in high-energy physics, Peter Galison quotes the author of a 1972 review 

article on computer simulation, the computational physicist Keith Roberts, as follows: 

Computational physics combines some of the features of both theory and 

experiment. […] It is symbolic in the sense that a program, like an algebraic 

formula, can handle any number of actual calculations, but each individual 

calculation is more nearly analogous to a single experiment or observation and 

provides only numerical or graphical results. (quoted in Galison 1996: 137) 

In the early days of computational science, „simulation‟ could be hands-on in a quite 

direct way. Herbert A. Simon, in his „Comments on the History of “Simulation”‟, 

recalls how, in an early (1956) paper, he and colleague spoke of „hand simulation‟ to 

indicate „that the program was not yet running on the computer, but that we had hand 

simulated its processes and thought we could reliably predict its behavior‟. The irony 

of then manually implementing what would nowadays be an automated procedure is 

not lost on Simon: „Here we [were] talking of people simulating a computer rather 

than a computer simulating people!‟
1
 

 At a descriptive level, computer simulationists share many of the procedures 

of experimentalists, among them „a shared concern with error tracking, locality, 

                                                 
1
 Quoted in (Röller 2008: 52-53). 
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replicability, and stability‟ (Galison 1996: 142), as well the initial challenge of 

„getting the simulation to behave properly at all‟ (Kennefick 2000: 26). It is not at all 

unusual to come across, especially in the writings of early computational physicists, 

references to computer simulations as „numerical experiments‟, „computer 

experiments‟ and so forth.
2
 While such phrases convey a sense of how the practice of 

computer simulations is experienced by those who engage in it, they are also 

philosophically vague. As Hans Radder notes, the phrase „computer experiments‟ is 

really an umbrella term for „various sorts of hybrids of material intervention, 

computer simulation, and theoretical and mathematical modeling techniques‟ (Radder 

2005: 271). As such, it stands in need of elaboration, and the conceptual relations 

between computer simulation and (traditional forms of) experimentation need to be 

investigated. 

 One bone of contention is the significance of materiality in traditional 

experimentation as opposed to the (allegedly) more ephemeral character of computer 

simulations. It has been variously suggested that computer simulation fails to meet 

certain criteria associated with „proper‟ experimentation. Thus Francesco Guala 

(2005: 214) argues that, whereas in traditional experimentation the same material 

causes operate („at a “deep”, “material” level‟) in both the experimental and target 

systems, in computer simulations one can at best expect an „only abstract and formal‟ 

correspondence relation (of similarity or analogy) between the simulating and the 

target systems. However, as Wendy Parker points out, while material similarity may 

often allow us to extract information about the target system, it is only one dimension 

along which one can assess the power of experiments and simulations to enable 

inferences about the target system. As a case in point, she refers to the example of 

weather forecasting. Re-creating a system that is materially continuous with the target 

system – that is made „of the same stuff‟, i.e. clouds, water, mountains – is rarely 

feasible, nor is it very promising for the purpose of day-to-day weather forecasts. 

(Parker 2009: 492) By running computer simulations of the underlying weather 

dynamics, scientists are in a much better position to make warranted predictions about 

tomorrow‟s weather. Hence, it need not be generally the case that, as some authors 

have suggested, traditional experiments „have greater potential to make strong 

inferences back to the world‟ (Morrison 2005: 317). 

                                                 
2
 See, for example, the chapter on „The Computer Experiment‟ in (Hockney and Eastwood 1988), and 

references therein. 
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 The tendency to think of computer simulations as, in some fundamental sense, 

more „abstract‟ than traditional experimentation, may be partly due to an ambiguity in 

the term „computer simulation‟ itself. If one understands by „computer simulation‟ the 

successful implementation of a computational template, which is then executed to 

generate a set of simulated data, then each run may be considered a new simulation. 

Assuming that the actual device, on which the simulation is being run, works 

correctly, there does not seem to be much room for questions of validity (and the 

corresponding „shared concerns‟ – of error tracking, replicability, etc. – that dominate 

traditional experimental practice): the correct outcome is simply whatever result is 

generated, and typically displayed, by the computer. This picture, of course, is too 

narrow, since by „computer simulation‟ one does not simply mean the outcome of any 

particular run of an algorithm; computer simulations are deployed in concrete settings, 

according to the goals of the specific project at hand, in order to investigate target 

systems across a range of parameter values. When thus viewed in terms of their 

pragmatic role in scientific inquiry, simulations, too – including the devices they run 

on, and the programming code – are subject to evaluation, revision, and improvement. 

As Parker puts it, although „computer simulations per se‟ – understood in an abstract 

sense, as a time-ordered sequence of states – „do not qualify as experiments, computer 

simulation studies do‟, where „computer simulation studies‟ refers to the investigative 

activity on the part of a researcher, who uses computer-generated results as input for 

further inquiry. (Parker 2009: 495) 

 As this brief discussion suggests, characterizing computer simulations as 

„numerical experiments‟ requires greater care than is typically exhibited by those 

practitioners of simulation studies who employ the term. Paul Humphreys may well 

be right when he writes that „claims that [computer simulation] methods lie “in 

between” theorizing and experimentation are […] best interpreted metaphorically‟ 

(Humphreys 2009: 625). However, this should be understood as a caveat, not as a 

prohibition against pursuing the parallels between scientific experimentation and 

computer simulation, and treating simulation studies as a form of experimental 

practice – though a novel one that raises its own, recognizably philosophical 

problems. 
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4. Formulating the ‘simulationist’s regress’ 

 

If one accepts that computer simulation studies are in many ways on a par with 

experiments, and indeed may be thought of as continuous with experimental practice, 

then one should expect to encounter arguments concerning their replicability which 

are similar to the ones that gave rise to the formulation of the experimenter‟s regress. 

Note that, at this stage, it is not necessary to endorse any sweeping claims that the 

experimenter‟s regress does in fact undermine the possibility of resolving 

experimental disputes through further empirical inquiry and rational debate. All that is 

required at this point is the acknowledgment that, to the extent that replicability raises 

serious questions for the practice of scientific experimentation, analogous questions 

can be raised for „numerical experiments‟, i.e. the practice of computer simulation 

studies. 

 In direct analogy with Collins‟s discussion, one can then define what one 

might call the „simulationist‟s regress‟, as applicable to those situations where the best 

or only test of a simulation is its own disputed result. As in the case of experiments, 

the regress will typically become apparent only in stubborn cases of disagreement, 

when mutually agreed methods of resolving disputes have failed. Before turning to 

specific examples of how the simulationist‟s regress might unfold, it is helpful to 

adopt a bird‟s-eye perspective and ask for general characteristics of situations where 

one might expect the regress to become salient. Collins‟s example of the search for 

gravitational waves is instructive in this respect, since it combines three important 

characteristics, each of which may contribute to the emergence of a regress. First, the 

example concerns the search for an as yet unobserved, and in many ways causally 

isolated, phenomenon. (Gravitational waves can neither be created, nor manipulated, 

nor do they have any observable effects outside the context of specific purpose-built 

detection devices.) Second, any theoretically predicted effect would be extremely 

small, thereby rendering even the existence claim that comes with a purported 

observation highly controversial. (Much of the controversy about gravitational waves 

concerned the question of how they would manifest themselves in any proposed 

experiment – i.e., what their experimental „fingerprint‟ would be.) Third, even on the 

most optimistic astronomical theories, measurable gravitational waves will be fairly 

rare, thus leading to a sparsity of empirical data. Taken together, these three factors 

give rise to the regress problem described by Collins: how are experimental disputes 
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to be resolved, if the claims in question concern the existence of causally isolated (or 

otherwise inaccessible) processes, for which empirical evidence is sparse? 

 The example of gravitational waves is special, insofar as it combines the three 

aspects distinguished above, thereby making the alleged regress especially salient. In 

the remainder of this section, I wish to argue, first, that less salient versions of the 

same problem can arise even when not all three aspects are instantiated, and second, 

that analogous considerations apply in the case of computer simulations. For one 

thing, simulations often take place under conditions of sparsity of empirical data with 

which to compare the simulation results – either because such data is not readily 

available, or because it cannot be generated at will in a controlled experiment. As Eric 

Winsberg points out: „[S]imulations are often performed to learn about systems for 

which data are sparse. As such, comparison with real data can never be the 

autonomous criterion by which simulation results can be judged.‟ (Winsberg 1999: 

289) Whether or not a simulation result is to be believed, is thus not generally 

something that can be settled by comparison with empirical data alone, at least not in 

cases of genuine dispute about the validity of the simulation itself. 

 In order to illustrate how regress-like worries can arise in the case of computer 

simulations, I want to describe briefly, without getting sidetracked by the nitty-gritty 

detail of a complete case study, three classes of actual scenarios, in which the best test 

of a simulation may be its own disputed result. Each example corresponds to one of 

the three aspects distinguished earlier, that is causal inaccessibility, novelty of the 

phenomenon (which issues in an existence claim), and sparsity of (real, empirical) 

data. 

 The first scenario is based on an existing case study from astrophysics 

(again!), and concerns simulation-based studies of the collapse of neutron stars. It is 

perhaps no coincidence that astrophysics is a rich source of examples, given that the 

target systems under investigation are often causally remote, in the sense that they do 

not lend themselves to manipulation or causal intervention in a controlled experiment. 

In his detailed case study, Daniel Kennefick (2000) reconstructs the controversy 

between different groups of scientists working on the astronomical analysis – and 

computation simulation – of how neutron stars may, given certain conditions, form 

binaries (i.e., systems of two neutron starts orbiting one another), which eventually 

collapse into one another, thereby forming a black hole. Specifically, Kennefick 

analyses the reaction of the astronomical community to the claims made by a pair of 
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computational physicists, who thought they had identified, through the use of 

computer simulation, a scenario in which one of the neutron stars forms a black hole – 

through a process Kennefick dubs „star crushing‟ – before it swallows up the other 

one. For various reasons, this claim contradicted what most analytically-minded 

theorists of general relativity expected, who immediately criticized the simulation 

results (in sometimes a rather wholesale fashion) as erroneous and due to 

programming errors. Focusing his attention on the divergent methodologies (and their 

corresponding criteria of what constitutes a valid derivation) of relativity theorists and 

computational physicists, Kennefick argues that theoretical predictions are subject to 

a „theoretician‟s regress‟, which arises from the „near impossibility of discriminating 

between the results of rival calculations which fail to agree, by the process of 

criticizing the calculations‟ (Kennefick 2000: 33-34; italics added).  

 The second scenario in which one might expect regress-like situations to 

emerge, can be illustrated by the simulation-aided search for the presence, or absence, 

of phase transitions in complex systems. While phase transitions are among the most 

salient phenomena in nature – one need only think of the freezing of water, the 

occurrence of spontaneous magnetization in certain metals, or the phenomenon of 

superconductivity – physicists are hard-pressed to come up with theoretical models 

that successfully explain their occurrence. The study of many-body models poses 

complex numerical challenges, and the full set of equations describing a many-body 

system is almost never analytically solvable. This has led to a proliferation of 

simplified mathematical models – such as the Ising model or the Heisenberg model – 

to capture the „essential physics‟ that is thought to be responsible for the phase 

transition.
3
 In order to evaluate such models, and whether they can account for phase 

transitions, computer simulations are being run to determine whether there is a region 

in parameter space where a phase transition occurs. The occurrence of a phase 

transition is typically indicated by the asymptotic behavior of certain variables (such 

as the correlation length, or a suitably defined order parameter) as the system 

approaches the critical point. For most many-body models in three dimensions it is 

unknown whether they are indeed capable of reproducing phase transitions; as a 

result, the search for models that have this capacity takes the form of a search for 

regions in parameter space where the relevant variables display „critical‟ behavior. 

                                                 
3
 On this point see also (Batterman 2002). 
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Hence, in the case of a purported positive result, we are faced with an existence claim 

– „that there is a phase transition in this region of parameter space, which matches the 

kind of phase transition in the target system‟ – where the best evidence for the success 

of a simulation is its own disputed result. 

 For the third kind of situation where one might expect to find a version of the 

simulationist‟s regress, I want to point to large-scale simulations arising within what 

is sometimes called Earth System Analysis, such as global climate models.
4
 At first it 

might seem counterintuitive to lament a „sparsity of empirical data‟, given that one 

challenge of simulating global climate change consists in integrating a diverse range 

of variables and complex data sets, and the relations between them. What is 

important, however, is not the actual amount of data involved, but the availability of 

independent data sets for the same variables. For example, one would typically like to 

compare the outcome of different simulation runs for different parameter values (e.g., 

certain levels of greenhouse gas concentrations), against experimental data 

corresponding to these different situations. However, when it comes to climate 

models, no independent experimental access to the target system – the Earth‟s climate 

– is possible: the only experiment that takes place is the irreversible climate change 

that we, as humans, are currently inflicting on the planet and its geochemical cycles. It 

may sometimes be possible to turn to substitutes for independent experimental „runs‟: 

in the case of climate modeling, for example, one might simulate different episodes in 

the Earth‟s climate and compare the simulation results with historical climate records. 

While it may sometimes be an option to run simulations of past, observed climate 

anomalies in order to test one‟s numerical models, one should not necessarily expect 

this to resolve any disputes unless there is a prior agreement about the – typically 

sparse – data that goes into any given simulation. In cases where such agreement is 

lacking, one can easily imagine scenarios where the validity of the corresponding 

results is challenged – on the basis of worries about the admissibility of past evidence, 

or by contesting the independence of the relevant data subsets – thereby rendering 

disputes about the significance of simulation results irresolvable. 

 

 

 

                                                 
4
 For a different historical example, see Peter Imhof‟s study of the uses of computer simulation in the 

Limits of Growth controversy (Imhof 2000). 
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5. Anatomy of a regress 

 

Having identified scenarios from different areas of research where one might expect 

regress-like situations to occur in computer simulation studies, let us approach the 

problem from a more systematic point of view, before discussing possible responses 

to it. Rather than ask which scientific questions or disciplines might be particularly 

susceptible to the simulationist‟s regress, I want to refocus attention on its similarities 

and dissimilarities with the experimenter‟s regress. I shall do so by developing two 

complementary perspectives on practical side of computer simulations, relating in 

turn to the software and hardware aspects of their implementation.  

 Numerical techniques and computing power have become important drivers of 

research across many scientific disciplines. Heavily-tested numerical software 

packages have turned computational methods into a commodity that is available to a 

wide range of researchers. Here is how two researchers in metabolic drug design 

describe the situation in their discipline: „Modern programs such as Gepasi (Mendes, 

1993) and SCAMP (Sauro, 1993) are easy to use, run on universally available 

equipment, and powerful enough to handle most of the problems likely to interest the 

metabolic simulator.‟ (Cornish-Bowden and Eisenthal 2000: 165-166) While over-

reliance on pre-packaged computational software may lead to epistemic problems of 

its own, regarding how to assess the validity of the results its generated, it is important 

to note a crucial contrast with possible cases of the simulationist‟s regress – such as 

Kennefick‟s example of „star crushing‟. In cutting-edge science – especially where it 

operates under conditions of sparsity of data, or deals with existence claims and 

situations of causal isolation – simulations are typically purpose-built and tailored to 

specific theoretical scenarios and situations. Thus, in the „star crushing‟ example, 

Wilson‟s and Mathews‟s results were attacked by a majority of relativity theorists and 

computational astrophysicists, not because of doubts concerning the validity of those 

approximations that were regarded as standard – as Kennefick notes, a number of 

elements in Wilsons‟s and Mathews‟s simulation „resemble[d] tricks commonly used 

for many years in analytic GR [=general relativity]‟ (Kennefick 2000: 14) – but 

because of theoretical considerations that made the alleged crushing effect unlikely, 

along with a subsequent failure of other numerical groups to replicate the effect. 

When replication fails (or is not even attempted because the result is deemed 

erroneous for other reasons), the proponent of the disputed simulation result faces a 
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similar challenge to the experimenter, in that „the experience of making a calculation 

work, which is part of what convinces the theorist that the result can be believed, is so 

particular to the specific theoretical apparatus and its operation that it is of little help 

in convincing those who disbelieve the result on other grounds‟ (Kennefick 2000: 33).   

 The fundamental problem, thus, in one of the replicability of simulations, i.e., 

their ability to generate stable data. Achieving replicability has both a „software‟ and a 

„hardware‟ aspect, which relate to different levels at which failures of replicability can 

(and sometimes do) occur. I shall begin with a discussion of the „software‟ aspect, 

which takes its lead from the earlier observation that cutting-edge simulations – of the 

sort that are most likely to give rise to potentially regress-like disputes – are typically 

tailored to specific theoretical problems or scenarios (such as the theoretical 

description of collapsing neutron star binaries in terms of approximations to 

Einstein‟s field equations). In such cases, there is no agreed-upon procedure for 

deriving (stable and computationally tractable) computational templates from 

fundamental theory.
5
 As Kennefick rightly points out: „In numerical work a great part 

of the effort is in getting the simulation to behave properly at all.‟ (Kennefick 2000: 

26) As with experiments, this stage of setting up simulations often involves tacit 

know-how on the part of the investigator and is rarely fully documented. Adopting 

Hans Radder‟s terminology regarding the epistemology of experiment, one might say 

that what is being achieved during this phase of „getting the simulation to behave 

properly‟, in various internal or external settings (i.e. for different parameter values as 

well as across different computers), is the mere replicability of the material 

realization of a simulation (i.e., its implementation on a concrete computing device). 

At this level, replicability – while being far from theory-free – is not yet assessed 

under a specific theoretical interpretation of the simulation results. (See Radder 1996: 

17 & passim.)  

The epistemic significance of this phase of „getting a simulation to behave 

properly at all‟ lies not in furnishing simulation results, which may then be compared 

against empirical data or theoretical predictions. Rather, what goes on during this 

phase may, on occasion, preclude which results a simulation is capable of generating 

later on –  once it has successfully been „tamed‟, as it were. For, this phase will be 

considered to have been concluded only once the simulation begins to give the kinds 

                                                 
5
 On the notion of „computational template‟, see (Humphreys 2004: 60-76). 
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of results we expect it to give. But, of course, under any realistic conditions of 

inquiry, we would not be needing the simulation if we already knew what to expect; 

hence, the best or only test of whether a simulation is working „properly‟ may, once 

again, lie in its own disputed result. 

 Replicability in the case of computer simulation, however, also has a 

„hardware‟ component, which is in addition to the difficulty, discussed so far in this 

section, of assessing whether a particular computational template is in principle 

capable of successfully replicating the behavior of a given target model. The 

additional worry concerns the further problem of the reliability of the concrete device, 

on which a simulation is being run. After all, any computer is itself a material piece of 

hardware and assessing whether it is a „properly functioning‟ device – irrespective of 

the stability of any computational template that might happen to be implemented on it 

– is subject to the experimenter‟s regress, or so the worry goes. Whereas the 

„software‟ aspect of computer simulation concerns the stability, tractability, and 

replicability of a piece of specially programmed code on a computational device that 

is assumed to be functioning properly, the „hardware‟ aspect concerns the replicability 

of the material realization of a simulation (i.e., its implementation on a concrete 

computing device), for various internal or external settings (i.e. for different 

parameter values as well as across different computers). Drawing a parallel to recent 

work on the philosophy of experimentation (e.g., Radder 1996), one might say that, at 

the „hardware‟ level, replicability – while being far from theory-free – is not yet 

assessed under a specific theoretical interpretation of the simulation results. What is at 

stake is not so much the adequacy or suitability of the computational template and its 

programmed implementation, but the proper functioning of the computing device 

itself. More often than not, it is taken for granted that the physical apparatus on which 

a simulation is run is indeed a correctly functioning computer; however, from a 

foundational viewpoint that aims to identify potential sources of a regress, „the theory 

of the apparatus in simulation is not negligible‟ (Weissert 1997: 112). Even a 

carefully tested and designed digital computer is, by necessity, only capable of finite-

precision arithmetic. This has several important implications for the replicability of 

simulations. For one, due to round-off errors, iterations of arithmetic operations will 

lead to a cumulative increase in the uncertainty of any numerical outcome. The 

precision of which a computing device is capable – which is in large part determined 

by the hardware – is especially important when dealing with regions of deterministic 
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chaos, where minute differences can lead to very different system trajectories. This 

may eventually result in a  loss of the true solution in the noise that is generated by the 

numerical procedure. As Weissert emphasizes: „This effect is not a loss of 

determinism in our dynamical system, but a loss of our ability to make the 

determination with a simulation.‟ (Weissert 1997: 115) However, it is important not to 

overstate the special difficulties posed by finite-precision effects inherent in the 

hardware. For, it is possible to numerically estimate the propagation of finite-

precision and round-off errors and their effect on the outcome of a simulation. This 

itself indicates that the kinds of challenges posed by the „hardware‟ and „software‟ 

aspects of replicability cannot always be neatly kept apart. Achieving replicability is a 

matter of eliminating sources of error and noise, and these include, amongst others, 

„computation instability, truncation error, iterative convergence error, programming 

mistakes, hardware malfunction, error in the mathematical form of the continuous 

model equations, error in the parameter values included in those equations etc.‟ 

(Parker 2008: 176-177). While this list may look dispiritingly long, it also contains a 

grain of hope, for it suggests that, rather than being faced with a „nesting‟ of 

independent sources of possible regress-like situations – e.g., hardware limitations, or 

particular features of the algorithms used in the software – it may be possible to help 

oneself to a range of techniques of achieving and testing replicability. Precisely 

because replicability is a composite phenomenon, it may be possible to assess the 

extent to which one „ingredient‟, relative to all others, poses a threat to replicability; 

one can then hope to identify conditions under which the simulation is sufficiently 

robust for the investigative purposes in question. This suggests a way of defusing 

possible worries about the dangers of a simulationist’s regress – „on top of the 

experimenter‟s regress‟, as it were – namely by showing that, perhaps, there is 

nothing special (or intrinsically less tractable) about regress-like situations in the case 

of simulation, as compared to experimentation. What one is dealing with, in either 

case, is the challenge of achieving replicability, and while this may take different 

forms in different experimental or simulation contexts, it is not unreasonable to expect 

that new contexts may also give rise to new benchmarks or mechanisms of how the 

stability of one‟s results can be ensured. 
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6. The response from robustness 

 

Among the possible responses to „data-technique circles‟, of the sort represented by 

the experimenter‟s and the simulationist‟s regress, two general approaches can be 

distinguished. First, one can begin with scientific practice, by identifying strategies 

that scientists employ in order to build confidence in their (experimental or 

simulation) results. Allan Franklin, on the basis of case studies of experimentation, 

has drawn up a list of such strategies (Franklin 1986; 2009), the most important of 

which are comparison (with known features of the system under investigation), 

calibration (of a given method against its performance in other systems), verification 

(of one experiment by other experiments or experimenters), retrodiction, consistency, 

intervention (including variation of input parameters), and elimination of likely 

sources of error. Several of these strategies have recently attracted attention in relation 

to computer simulation (Weissert 1997: 122-125; Parker 2008). I shall here, however, 

focus on a second, more abstract approach to the question of when we are justified in 

placing trust in the (non-obvious, or even controversial) results of scientific 

experimentation and simulation.
6
 This response takes its cue from the familiar 

problem of when to trust what others tell us. Imagine that a hearer encounters a series 

of unexpected instances of testimony, each reporting the same unusual event. Should 

she believe what she is told, even when she has prima facie reason to think it 

implausible? It depends on whether the testifiers are independent or not. If the hearer 

has good reason to believe that the testifiers she encounters really are independent, 

and their testimonies concur in all relevant respects, then this should boost her belief 

in the truth of the testimony, even when the asserted fact is individually implausible. 

Moreover, it would be rational for her to believe the reports, given their unanimous 

concurrence, even when she knows each testifier to be individually unreliable. With 

independent pieces of evidence, the likelihood of error is the likelihood that all the 

evidence is wrong at the same time (and that all its ingredients are wrong in exactly 

the same way, given their concurrence) – and this becomes an ever more remote 

possibility the more concurring instances of evidence are involved. It is for this reason 

that police routinely accept the concurring, uncontradicted testimony of, say, 

                                                 
6
 It is worth emphasizing that this general approach is complementary to, and compatible with, 

Franklin‟s identification of specific strategies (in particular, Franklin‟s admission of statistical 

arguments into the array of confidence-building strategies).  
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accomplices even when they know them to be individually unreliable on most 

occasions – just not on this one. 

 Applying similar considerations to the case of „data-technique circles‟, one 

arrives at what one might call the response from robustness. This response to 

Collins‟s experimenter‟s regress has been aptly argued by Sylvia Culp (1995), who 

describes the basic idea as follows: 

When comparable data can be produced by a number of techniques and the 

raw data interpretations for these techniques do not draw on the same 

theoretical presuppositions, this remarkable agreement in the data (interpreted 

raw data) would seem to be an improbable coincidence unless the raw data 

interpretations have been constrained by something other than shared 

theoretical presuppositions. (Culp 1995: 448) 

Culp‟s paper takes the form of a case study of different DNA sequencing techniques, 

each of which exploits different parts of the overall framework of the theory of DNA. 

For example, one technique might exploit the effect of certain enzymes that cut DNA 

at particular points in the sequence, whereas the other might be based on the 

individual replacement of particular nucleotides with different bases. By employing 

different techniques, „each of which is theory-dependent in a different way‟, it is 

possible – Culp argues – to eliminate the overall „dependence on at least some and 

possibly all shared theoretical presuppositions‟, thus giving rise to bodies of data that 

have been produced by de facto independent techniques. (Culp 1995: 441) If these 

data sets all support the same theoretical interpretations, then we can accept these 

results with good reason, since the concurrence of independent techniques would 

otherwise be a near-miracle. Culp argues not only that is it possible to eliminate 

theory-dependence (and with it the danger of circularity) in this fashion, but 

additionally that „it is the production of robust bodies of data that convinces scientists 

of the objectivity of raw data interpretations‟ (ibid.). 

 Following on from the empirical claim that robustness is what actually 

generates agreement among scientists, three problems with Culp‟s account need to be 

mentioned. First, there is a tension with the historical observation – impressively 

substantiated by Hasok Chang‟s recent (2004) study of the evolution of techniques of 

thermometry – that, in many areas of science, calibration across theoretically 

interdependent techniques is the norm, whereas true independence is the exception. 

This historical point is but the flipside of a second, more systematic consideration. 

What would be the alternative to calibrating a given measurement technique against 
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existing standards and techniques that are theoretically „of a piece‟, as it were, with 

the technique under investigation? We would be thrown back on our prior (theoretical 

and pre-theoretical) expectations of what a good result would be. However, these 

expectations are no more independent from one another than, for example, the various 

measurement techniques for temperature discussed in (Chang 2004). Hence, even if 

all our seemingly „independent‟ measurement techniques were indeed calibrated only 

according to our (pre-)theoretical expectations, given that these expectations do not 

form an independent set, the alleged independence of our techniques would once 

again be undermined. Finally, if we did have independent measurement techniques 

that were neither calibrated against one another, nor calibrated according to the same 

expectations and evidence, how could we be so sure they would all be measuring the 

same quantity? Or, alternatively, how could disputes about whether or not a newly 

proposed technique does in fact measure the same quantity, possibly be resolved?
7
 It 

would appear that total independence could only be achieved at the cost of 

incommensurability of one sort or another. 

 It should be noted that thinking of experimentation merely in terms of the 

deployment of measurement techniques is guaranteed to paint an impoverished 

picture of the nature of experiment. It is a striking feature of many of the examples 

that are cited in support of the experimenter‟s regress – most prominently, the 

detection of gravitational waves – that there is not actually all that much 

experimenting going on. The experiments in question tend to be cases of passive 

detection; they do not involve the systematic exploitation of causal powers and their 

„redeployment‟ in other parts of nature – in short, the kind of „intervening in nature‟,  

that, in the eyes of Ian Hacking and others, is crucial to the trust we place in 

experiments.
8
 (Hacking 1983: 38) A similar sentiment appears to motivate Parker‟s 

emphasis that, if one is to think of computer simulation as a kind of experimental 

activity, one must go beyond its definition as a „time-ordered sequence of states‟ and 

introduce the broader notion of computer simulation studies, which is taken to also 

include actions on the part of the simulationist, through which he intervenes in a 

system. (Parker 2009: 495) As I shall argue in the remainder of this paper, the notion 

                                                 
7
 Chang makes a similar point with respect to the historically contested technique of Wedgwood 

pyrometry (Chang 2004: 127). 
8
 Indeed, as Franklin acknowledges, this is why any complete „epistemology of experiment‟ must 

include specific confidence-building strategies „along with Hacking‟s [criterion of] intervention and 

independent confirmation‟ (Franklin 2009; italics added). 
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of robustness, too, must be broadened beyond the mere insistence on independent 

techniques of data-generation if it is to be of use against the simulationist‟s regress. 

 

 

7. Models as targets 

 

Just as one finds different views on whether or not computer simulation should 

properly be regarded as a kind of experimentation, one also finds divergent views on 

the question of what the „target‟ of computer simulation really is. What does 

simulation typically aim at? Eric Winsberg has argued that, whereas experiments 

„often play the role of providing crucial tests for theories, hypotheses, or models‟, 

simulations ordinarily cannot, since they assume significantly more background 

knowledge – including knowledge „about how to build good models of the very 

features of the target system that we are interested in learning about‟ (Winsberg 2009: 

587). What matters for simulations, on this account, is their external validity: how 

well a simulation performs with respect to the (physical) target system and its relation 

to the outside world. Indeed, it is the „possession of principles deemed reliable for 

building models of the target systems‟ that, according to Winsberg, plays a criterial 

role in defining simulation in the first place: such possession of background principles 

is what justifies our treatment of a simulation, implemented on a digital computer, as 

an adequate stand-in for the target. (Winsberg 2009: 588) 

 It is helpful, in this context, to briefly return to the earlier distinction (see 

Section 3) between „computer simulation‟ simpliciter and „computer simulation 

studies‟. Both often get subsumed under the umbrella term „simulation‟, but differ in 

relevant respects. When one speaks of a simulation (simpliciter) of a physical system 

P, there is a clear sense in which the term „simulation‟ is employed as a success term: 

for something to succeed – however imperfectly – in simulating P, it is necessary that 

P exist and that one‟s simulation stand in the right sort of relation to it. Typically, this 

is achieved through building theoretical models of the target system P and 

implementing appropriate computational templates on a computing device. Clearly, 

then, someone who intends to simulate a physical system P must possess (or at least 

take himself as possessing) sufficiently reliable principles for modelling P. This, I 

take it, is what lies at the heart of the claim that what distinguishes experimentation 

from simulation is that the latter requires „possession of principles deemed reliable for 
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building models of the target systems‟. However, if one means by „simulation‟ a 

general kind of theoretical activity (as suggested by the expression „computer 

simulation studies‟), rather than the establishment of a relation between a 

computational procedure and a particular physical system P, then more exploratory 

uses of simulation might be legitimate, even in the absence of specific theoretical 

knowledge about any particular target system. In the remainder of this section, I want 

to suggest that computer simulation studies need not, and indeed cannot, always 

presuppose a good prior grasp of what makes something a good model. To be sure, in 

many cases it may be possible to assess the success of simulations directly in light of 

their external validity against experiments and observations, especially when there is 

agreement about which model properly represents the target systems (think of a 

Newtonian model of the solar system). However, when there is a lack of such 

agreement, it quickly becomes apparent that, as Margaret Morrison puts it, „strictly 

speaking the model is what is being investigated and manipulated in a simulation‟ 

(Morrison 2009: 45), not the target system. It is in this sense that one can – as 

scientists often do – speak of „simulating a model‟. Simulations do not always have 

real physical (or biological, or otherwise materially constituted) systems as their 

immediate target. Instead, in many cases, what is being simulated are mathematical 

models, i.e. abstract objects that are not themselves (and do not purport to be) part of 

the causal fabric that a physical experiment would typically exploit.
9
 That many of the 

most widely investigated – and in this sense „successful‟ – models in science are, 

strictly speaking, uninstantiated is hardly news to anyone who is aware of the role that 

idealization and abstraction play in their construction. But models are often 

investigated not with an eye to how accurately they represent any particular target 

system, but with an eye to whether or not they exhibit certain theoretically expected 

behaviors – as in the case of phase transitions mentioned above. In many scientific 

contexts, one is less interested in a particular model with fixed parameter values than 

in a class of models defined by some (continuously varying) control parameter. In 

such cases, it is often „the entire model class that becomes the entity class that 

becomes the entity under scrutiny‟ (Weissert 1997: 108). The real systems, in which 

the phenomenon of interest has been observed (e.g. spontaneous symmetry-breaking, 

in the case of phase transitions), need not individually be accurately described by the 

                                                 
9
 Note that this is not meant as a criterion for distinguishing between simulation and experiment. 
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mathematical models in question. In fact, the class of real systems can be so diverse 

that it would be quite misleading to jump to conclusions about the external validity of 

simulation results for any one subclass of real target systems. 

 Simulation, thus, is in many ways a less constrained practice of scientific 

investigation than causal-interventionist experimentation, making it more difficult to 

tell whether an unexpected result represents a feature of a „real‟ target system or is a 

mere artifact. Galison makes a similar observation when he writes:  

From the start, simulations presented a hybrid problem. On one side, the work 

was unattached to physical objects and appeared to be as transportable as 

Einstein‟s derivation of the A and B coefficients for quantum emission and 

absorption. But in practice, this was hardly the case. (Galison 1996: 140) 

Interestingly, computer simulationists have sometimes taken this causal 

„detachedness‟ of simulations to be an advantage: Galison quotes Herman Kahn, of 

the RAND corporation, as saying that Monte Carlo simulation methods „are more 

useful […] than experiments, since there exists the certainty that the comparison of 

Monte Carlo and analytic results are based on the same physical data and 

assumptions.‟ (Galison 1996: 143) However, unless more is said about why 

dependence on the same theoretical assumptions is unproblematic, rather than a 

compounding factor in any looming data-technique circles, such optimism is little 

more than a leap of faith. In the remainder of this paper, I wish to develop a position 

that acknowledges (and endorses) a certain degree of independence of simulation 

from experiment, while also providing the internal resources to fight off the danger of 

vicious data-technique circles that might arise from the fact that „the assumptions of 

the underlying model are, barring incompetence, built into the simulation and so the 

simulation is guaranteed to reproduce the results that the model says it should‟ 

(Humphreys 2004: 134). In order to do so, it is important not to assimilate questions 

about the trustworthiness of simulation to questions about the external validity of 

particular simulation results, but to recognize that simulation – in particular, in 

relation to mathematical models – introduces new dimensions along which its 

trustworthiness can be assessed. 
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8. Robustness, invariance, and rigorous results 

 

Computer simulation stands in need of justification, and the same confidence-building 

strategies that have been discussed for experimentation – calibration, verification, 

elimination of error, comparison with known results etc. (cf. Franklin 1986, Parker 

2008) – can also be extended to the case of simulation. In particular, as Winsberg puts 

it, „the first criterion that a simulation must meet is to be able to reproduce known 

analytical results‟ (Winsberg 1999: 189). Likewise, Humphreys writes: „In the case of 

computational devices, the calibration standards that must be reproduced are 

analytically derived results which serve as mathematical reference points.‟ 

(Humphreys 2004: 117) The significance of such analytical results as „mathematical 

reference points‟, I want to argue, plays a special role in computer simulation, 

inasmuch as it goes beyond the mere reproduction of certain numerical values that are 

known to obtain (e.g., for certain parameter values), and beyond their uses in 

calibrating the computer qua physical device. Analytical results, in the form of what 

first came to be known in statistical physics as rigorous results (see Ruelle 1969 and 

Gelfert 2005), add structure to mathematical models that can neither be deduced from 

fundamental theory nor inferred from (or, for that matter, compared with) 

experimental data. In addition to exact solutions – which, for many mathematical 

models, are hard to come by – other examples of rigorous results might include 

impossibility theorems, upper and lower bounds for certain variables, or mappings 

between different mathematical models. The latter – the existence of rigorous results 

that relate different classes of models – has also been shown to lead to qualitatively 

new ways of indirect confirmation of models (and across models). Thus, in one recent 

example from condensed matter physics, it has been argued that it is only in virtue of 

a mathematically rigorous mapping between two mathematical many-body models -- 

the Hubbard model (for itinerant electrons) and the Heisenberg model (for fixed 

spins) -- that the former was recognized as successfully representing a particular class 

of real, experimentally known physical systems (known as Mott insulators). (See 

Gelfert 2009: 509-517, for a detailed study of this example.) 

 It should come as no surprise, then, that such rigorous results and relations 

have been used by scientists for the calibration of computer simulation methods: „The 

partial independence of rigorous results from fundamental theory, and the fact that 

they are model-specific, makes them interesting “benchmarks” for the numerical and 
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analytical techniques of calculating observable quantities from the model.‟ (Gelfert 

2009: 506) However, the mere existence of a benchmark does not guarantee that a 

simulation method that conforms to it does, in fact, provide accurate results for real 

target system. There is a danger that the mere existence of rigorous benchmarks 

encourages belief in the general validity of a simulation method, once it reproduces 

them, even when the benchmarks – as can happen with rigorous results – have no 

connection to a model‟s actual performance in specific empirical contexts. 

 What, then, is the proper role of rigorous results and how can they help 

alleviate the threat of the simulationist‟s regress? In order to see how, it is important 

to realize that rigorous results have no analogue at the level of experimental data. 

They are genuinely new contributions at the level of mathematical models, and are 

often quite specific to certain classes of models. They also cannot be „read off‟, so to 

speak, from fundamental theory: they do not merely re-state fundamental theoretical 

assumptions. This partial independence from both theoretical assumptions and 

empirical data introduces a genuinely new layer of assessment: simulations of 

mathematical models can be evaluated in terms of whether or not they conform to 

relevant model-specific rigorous results. The qualifier „relevant‟ is important, of 

course. Given that it may or may not be possible to give rigorous results an 

empirically meaningful interpretation, some rigorous results will inevitably be more 

important than others. For example, in one model a conserved quantity may indicate 

the preservation of particle number, while in another model a constant number may 

refer to an „unphysical‟ (i.e., not even in principle realizable) limiting case. There may 

be entirely legitimate trade-offs – that is, situations in which an investigator might 

tolerate the violation of a rigorous result by a given simulation method, if there are 

principled reasons for regarding the rigorous result as of secondary importance. As an 

example, consider the so-called Mermin-Wagner theorem, according to which there is 

no long-range order (and hence no associated phase transition, such as spontaneous 

magnetization) at finite (non-zero) temperatuures in one- or two-dimensional lattice 

systems. The Mermin-Wagner theorem has been rigorously shown to hold for a 

number of mathematical many-body models, including many (such as the Heisenberg, 

Hubbard, and Kondo-lattice models) that are currently used to describe, for example, 

spatially extended (three-dimensional) ferromagnetic systems. Interestingly, computer 

simulations of these models for low dimensional (1D or 2D)  systems sometimes do 

predict a phase transition to an ordered state. That is, such simulations strictly violate 
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rigorous results that have been established mathematically for the underlying models. 

What should a simulationist do in such a situation? On the one hand, low-dimensional 

order (e.g., magnetic layers) are an experimentally established phenomenon, and there 

may be independent theoretical grounds to believe that those mathematical models 

that successfully describe the three-dimensional case should also extend to low-

dimensional samples of the same substance. On the other hand, the simulation results 

directly contradict a mathematically rigorous result. Interestingly, there is no 

agreement among practitioners in the field about how to proceed. In the example at 

hand, some scientists argue that the simulation „approaches the physical reality 

(magnetic order in thin films does really exist) better than the Hubbard model in its 

exact form‟, whereas others insist that if a simulation „predicts the occurrence of 

spontaneous magnetization in one and two dimensions as well as in three dimensions 

[…], the validity of these predictions in three dimensions should clearly be 

investigated more fully‟.
10

 As this example indicates, the existence of rigorous results 

merely creates a presumption against their violation. But rigorous results do introduce 

a new kind of standard, by which simulations of models can be judged in terms of 

their relative performance, one that is largely independent from empirical 

performance and theoretical expectations.  

 The standard response from robustness, discussed in Section 6, conceived of 

robustness explicitly as the concurrence of measurement techniques or, more 

generally, techniques of data-production. On such an interpretation, computer 

simulation would seem to have little to contribute, since simulated data is hardly 

independent enough to add significantly to robustness: as Humphreys rightly notes, 

„when simulated data rather than real data are fed into the simulation, the prospects 

for informing us about the world are minimal‟ (Humphreys 2004: 134-135). An 

exclusive focus on measurement techniques, however, would likewise construe the 

notion of robustness too narrowly. It is more fruitful, I believe, to think of robustness 

as, in Bill Wimsatt‟s terms, „a family of criteria and procedures‟. Among the heuristic 

principles that should guide robustness analysis, Wimsatt goes beyond independence 

of „derivation, identification, or measurement processes‟ to explicitly include three 

further principles, namely a) the search for factors „that are invariant over or identical 

in the conclusions or results of these processes‟, b) the „scope‟ and „conditions‟ of 

                                                 
10

 For sources and a brief discussion see (Gelfert 2005: 733-737). 
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such invariances, and c) the analysis and explanation of „any relevant failures of 

invariances‟ (Wimsatt 1981: 126). Of the four classes of considerations that Wimsatt 

identifies, the independence and diversity of measurement techniques makes up only 

one; the remaining three deal with issues of invariance or its failure. One way in 

which invariances manifest themselves in mathematical models are precisely the kind 

of rigorous results discussed earlier, especially where these relate to conserved 

quantities, symmetries (as well as symmetry-breaking), scale-invariance and so forth. 

However, not all rigorous results concern „global‟ constraints, such as conservation 

laws or symmetries of a system. As the example of the Mermin-Wagner theorem 

shows, rigorous results also make predictions concerning the presence or absence of 

certain phenomena (such as spontaneous order) in specific systems. Other examples 

of rigorous results include mappings of different classes of models onto one another 

in specific limiting cases (as in the Mott insulator scenario), upper and lower bounds 

on various quantities (or on features such as the correlation length) in a system, 

critical exponents in the vicinity of phase transitions, or the topological relationships 

between orbits (e.g., in systems governed by chaotic dynamics). Given this rich 

panoply of rigorous results and relations, it is therefore eminently sensible, when one 

is simulating mathematical models, to test one‟s simulation methods against rigorous 

results – whether or not these can be given an empirical interpretation – and to come 

to a considered judgment whether possible violations, or failures ofcertain rigorous 

results, are significant or not. Rigorous results do not wear their significance on their 

sleeve, as it were, but they do provide an additional layer of assessment – one that is 

specific to the practice of simulating mathematical models and has no analogue in 

traditional experimental practice. 

 

 

9. Conclusion: Deflating the ‘simulationist’s regress’ 

 

Where does this leave the initial worry that simulation studies may be subject to a 

simulationist’s regress that is analogous to, but conceptually distinct from, the 

experimenter‟s regress and that may very well be more difficult to resolve in practice, 

given that independent data is so much harder to come by than in the case of 

traditional experimentation? On the account I have sketched, this worry appears 

somewhat exaggerated. It overstates the „detachedness‟ of computer simulation from 
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conditions of real inquiry, and it creates the false impression that the robustness of an 

inquiry is purely a matter of what kind of data it draws on, and which techniques it 

employs to produce such data. Once the original notion of robustness as a family of 

criteria and procedures is restored, it becomes apparent that the practice of simulating 

mathematical models is misdescribed if one thinks of it merely in terms of the 

generation of simulation results and their external validity. Over and above the 

comparison between empirical and simulated data, there exist a range of procedures 

of assessing whether a simulation „respects‟ the fundamental features of a model; 

rigorous results are one such class of examples. Their status as features of 

mathematical models themselves – i.e., as genuinely new contributions at the level of 

models, lacking an analogue in traditional experimentation – allows them to function 

as independent internal standards for the assessment of simulation methods. 

 Worries about data-technique circles deserve close attention and they can 

indeed become problematic in the scenarios discussed earlier (e.g., when a dispute 

arises over the existence of causally isolated novel phenomena). But simulation does 

not, in and of itself, have to bear a heavier burden of proof than traditional 

experimentation. One might naively think that simulation is necessarily one step 

further removed from nature and that, therefore, it is somehow doomed to take place 

„in thin air‟ – thus making it prone to a special kind of regress, where the best or only 

test of a simulation is its own disputed result. But such a view ignores that simulation 

can help itself to a range of independent internal standards, rigorous results being one 

example. While simulation no doubt introduces a qualitatively new step in the multi-

step process of investigating nature, it also provides new criteria and ways of 

assessment. It thus seems appropriate to end on a deflationary note, by stating that, 

while simulation makes qualitatively new demands on the researcher who must 

exercise his judgment in assessing its results, it is no more prone to data-technique 

circles than traditional experimentation.  
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