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Abstract

The present paper argues that 'mature mathematical formalisms' play
a central role in achieving representation via scienti�c models. A close dis-
cussion of two contemporary accounts of how mathematical models apply
- the DDI account (according to which representation depends on the
successful interplay of denotation, demonstration and interpretation) and
the 'matching model' account � reveals shortcomings of each, which, it is
argued, suggests that scienti�c representation may be ineliminably het-
erogeneous in character. In order to achieve a degree of uni�cation that is
compatible with successful representation, scientists often rely on the ex-
istence of a 'mature mathematical formalism', where the latter refers to a
� mathematically formulated and physically interpreted � notational sys-
tem of locally applicable rules that derive from (but need not be reducible
to) fundamental theory. As mathematical formalisms undergo a process
of elaboration, enrichment, and entrenchment, they come to embody the-
oretical, ontological, and methodological commitments and assumptions.
Since these are enshrined in the formalism itself, they are no longer read-
ily obvious to either the novice or the pro�cient user. At the same time
as formalisms constrain what may be represented, they also function as
inferential and interpretative resources.
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1 Introduction

Idealization, abstraction, and approximation have long been at the heart of much
of the physical sciences, and the deliberate construction of scienti�c models has
an only slightly shorter history. And yet there is a sense that the systematic and
pervasive deployment of scienti�c modelling techniques is a fairly recent phe-
nomenon; in some disciplines � especially those that deal with complex systems
� scienti�c models have become the default mode of how to approach scienti�c
problems. As Adam Morton puts it, `what is new and distinctive in the sci-
ence of our time is the existence of complex mediating models which themselves
have explanatory power and which embody techniques of modelling which can
be re�ned and passed down to successor models, even though the models never
themselves can function as background theories' [Morton 1993, p. 664]. In the
present paper, I focus on the role of mathematics in this process; in particular,
I shall argue that `mature mathematical formalisms' embody inferential strate-
gies and theoretical commitments that contribute to, and sometimes ensure, the
representational success of scienti�c models.

In the philosophical literature, the success of models continues, for better
or worse, to be discussed in representational terms: in short, scienti�c models
represent, and successful models represent successfully. In the present paper, I
do not attempt to explain what scienti�c representation is in general. Instead,
I focus on how mathematical models represent reality. In particular, I want to
argue for a positive role of mathematical formalisms in achieving representa-
tion. The notion of `mathematical formalism' calls for some clari�cation. As I
understand the term, a mature mathematical formalism is a system of rules and
conventions that deploys (and often adds to) the symbolic language of math-
ematics; it typically encompasses locally applicable rules for the manipulation
of its notation, where these rules are derived from, or otherwise systematically
connected to, certain theoretical or methodological commitments. As a result,
a mature mathematical formalism is imbued with, but not usually reducible to,
what Nancy Cartwright has called `fundamental theory' (where the latter aims
at a complete account solely in terms of fundamental laws; see [Cartwright 1983,
p. 1]). A given mathematical formalism need neither be unique nor complete
(in whatever sense of uniqueness or completeness), though its amenability to
a wide range of representational tasks will, of course, count in its favour. In
order to avoid misunderstanding, it is perhaps worth pointing out that, as I un-
derstand the term, `mathematical formalism' does not refer to (nor entail any
preference with respect to) any particular debate or position within the philos-
ophy of mathematics; my concern in this paper is with how scientists deploy
(physically interpreted) mathematical formalisms as inferential and interpreta-
tive strategies.

The present paper can be thought of as divided into two parts, Sections
1-3 and Section 4. The �rst three sections are devoted to a close analysis
of the challenges and problems faced by contemporary accounts of scienti�c
representation, especially in relation to mathematical models. Section 4, which
makes up roughly the second half of the paper, develops in detail my view that
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mature mathematical formalisms in science function as inferential practices and
interpretative resources and play an essential role in achieving representation.

2 Recent accounts of how models apply

In the present section, I discuss two recent accounts of how mathematical models
represent, each of which is indicative of a certain conception of how mathemat-
ical models apply to the world. On the �rst account, a mathematical model
� as stated, say, in the form of a set of equations � represents a target system
indirectly, via an intermediate `matching model' that is posited as isomorphic to
the target system. The representational power of a given mathematical model
thus resides in its overall ability to `map' more or less idealised physical situa-
tions. The second approach takes as primary the observation that mathematical
modelling is a theoretical process that involves di�erent component steps; repre-
sentation, on this account, is to be understood as the joint outcome of di�erent
contributing factors that are by and large on a par with one another.

2.1 Derivation and matching models

One strand of the philosophical debate about mathematical models has devel-
oped from the perceived indispensability of mathematical entities in scienti�c
explanation. Many explanations, especially in physics, appear to be based es-
sentially on mathematical features, rather than on an appeal to causal fac-
tors, which are often abstracted away or otherwise discounted. Philosophers
of mathematics have sometimes appealed to nature's apparent amenability to
mathematical representation, and to the explanatory power of mathematics, as
evidence for Platonism about mathematical entities. For philosophers of science,
too, our far-reaching reliance on mathematics as a means for representation and
scienti�c explanations, raises important questions: How do mathematical mod-
els represent the world, and how can we hope to gain understanding of the
physical world by deploying such models? In the present section, I shall take
as my starting point one recent philosophical proposal, due to Christopher Pin-
cock, regarding the question of how mathematical models apply to the world.
I shall follow Pincock by beginning with a concrete example, the partial di�er-
ential equation known as the one-dimensional heat equation, which is used to
represent the heat �ow along one direction of a material with thermal conduc-
tivity κ, density ρ, and speci�c heat s. The temperature distribution u(x, t) at
point x and time t may then be described by the partial di�erential equation(

κ

ρs

)2
∂2

∂x2
u(x, t) =

∂

∂t
u(x, t). (1)

Whenever we apply a particular equation to a physical phenomenon, we can in-
quire into (1) the equation's relation to the theory that is presumed to cover the
phenomenon in question, and (2) the adequacy of the equation as a represen-
tation of the phenomenon. In the present example, this leads to the following
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questions: (1) `under what conditions are scientists warranted in adding this
equation to their `scienti�c theory of heat', and (2) `under what conditions are
scientists warranted in using this equation to describe a particular physical sys-
tem?' [Pincock 2005, p. 68] The former question, in Pincock's terminology,
constitutes a search for derivation conditions, while the latter question calls
for the speci�cation of application conditions. Let us turn to the problem of
derivation conditions �rst, with the caveat that the speci�c conditions and as-
sumptions that feature in the context of a derivation will, of course, vary from
one example to another. Given that the mathematical details of the derivation
of the 1-D heat equation are discussed in Pincock's case study, I shall con�ne
myself to pointing out some of the derivation's general features, especially those
that illustrate the kinds of questions that arise from the demand for derivation
conditions.

In deriving the equations that are constitutive of a mathematical model, one
may, for example, start from empirically established regularities that hold across
a wide range of experimental data.1 Such regularities are sometimes invoked as
phenomenological laws, as, for example, in Hooke's law of applied mechanics.
In the case of the heat equation, the relevant phenomenological law is Newton's
law of cooling, according to which the rate of heat loss of one body to another
is proportional to the di�erence in temperature between them. The regularities
that phenomenological laws describe typically do not hold universally: Hooke's
law, which describes the linear elongation of a body (e.g., a metal spring) under
an external force (e.g., a weight attached to the spring), is violated once the
external force becomes too strong; Newton's law of cooling, which entails that
a macroscopic object is cooled most e�ectively by placing it in a heat bath
with minimal (ideally: zero) temperature, neither holds for microscopic systems
governed by quantum mechanics, nor for non-classical cooling methods such as
thermal annealing. (See ref. [Tarnow 1994].) Such limitations and exceptions
are one reason why phenomenological laws are not themselves considered part
of fundamental theory, even if, in some cases, phenomenological laws may be
derived � often retrospectively � as limiting cases of more fundamental laws. In
speaking of phenomenological `laws', as well as in formulating them in terms of
such quantities as the (momentary) `rate of heat loss', one is already, strictly
speaking, extrapolating beyond the empirical �ndings: any experiment, however
elaborately carried out, can only ever measure the �nite amount of heat that is
transferred over a non-zero period of time, not the momentary rate of heat loss
at a given instant.

This distinction between the `coarse-grained' character of the experimen-
tal data (consisting of measurements of �nite di�erences ∆x1,∆x2, ...) and
the `in�nitesimal' character of Newton's law, is more than mere hairsplitting.
Rather, it points to an important aspect of mathematical modelling, especially
where this involves deriving di�erential equations such as the 1-D heat equa-
tion. In virtually all such derivations, a transition from di�erence equations

1Other background assumptions will, of course, need to be added as well; this includes
certain prescriptions and conventions regarding the interpretation of the equations.
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to di�erential equations requires a limiting procedure, such as taking the limit
∆x → 0, thereby replacing measurable di�erences with unobservable in�nites-
imal changes. Their ubiquity across so many areas of science should not belie
the fact that such limiting procedures raise some very fundamental problems.
Apart from the mathematical question of whether the limiting procedure suc-
cessfully converges or not, there is the fundamental worry that such limiting
procedures may cast doubt on whatever representational signi�cance the quan-
tities in question might have had in the �rst place. Consider the example of the
1-D heat equation. Deriving the partial di�erential equation, in its form given
in equation (1) above, requires, amongst other steps, evaluating the heat loss
across an in�nitesimal distance ∆x in the limit ∆x → 0. However, given the
(undisputed) atomic constitution of matter, and a further fundamental tenet of
the theory of heat � namely that heat is simply the average kinetic energy of the
constituent atoms � taking the limit ∆x → 0 would quickly become meaning-
less: there is no such thing as the heat at a given point in space, only the heat
in a region of space that is large enough to actually accommodate an ensemble
of atoms. Yet, for the mathematical derivation of the heat equation it is crucial
that it be possible to take the limit � stopping at some �nite minimum length
∆x > 0 will not do. The problem, then, appears to be this: in deriving the heat
equation � an equation which purports to describe the physical phenomenon
of heat conduction � we start from an empirically measurable relationship (the
proportionality between any �nite amount of heat transferred and the temper-
ature di�erence between two objects), yet we are forced to introduce quantities
and employ limiting procedures which no experiment would lead us to think
are well-de�ned. As Pincock puts it, we have here `an apparent gap between
our evidence for the premises of the derivation and the assumptions needed to
warrant the steps of the derivation.' [Pincock 2005, p. 70]

How, then, can one justify placing trust in such derivations as are illustrated
by the heat equation? One option would be to assess the �nal result of the
derivation � in this case, the heat equation � simply on its own terms, by its
empirical performance or its predictive success. However, such an instrumen-
talist approach would make the success of our derivations, if not a miracle,
then certainly a mystery. Derivations play an important part as aides to our
understanding of mathematical models and to the resolution of interpretative
problems; dismissing the value of actual derivations in favour of brute instru-
mental success would at the very least be premature. A less radical approach
might acknowledge the relevance of the derivation, but regard the latter as a
primarily mathematical exercise, which need not lend itself to a physical inter-
pretation at every step. This, in e�ect, is the position advocated by Pincock,
who holds that in deriving mathematical models, we typically move back and
forth between a physical attitude � `which insists that throughout we are talking
about physical systems and physical magnitudes' [Pincock 2005, p. 70] � and a
mathematical attitude, which views such steps as taking the `unphysical' limit
∆x → 0 as `involving only mathematical objects' (in this case, in�nitesimals).
Each attitude alone typically does not su�ce: from the perspective of the phys-
ical attitude, many steps of a derivation will strictly speaking be false � simply

5



because the idealisations and approximations employed are known to be just
that: idealisations and approximations, rather than true representations of the
full state of a�airs � whereas adopting a thoroughgoing mathematical attitude
would sever the link that connects the derived model equation to the physical
system, or phenomenon, which it is supposed to describe.

The claim that derivations of model equations involve two, prima facie in-
compatible attitudes, is not intended as a merely descriptive claim about sci-
enti�c practice. The point is not that some scientists lean more towards one
attitude rather than the other, or that there is perpetual vacillation between the
two; instead, both are essential components of any complete account of mathe-
matical modelling, and each contributes in distinct ways to the representational
capacity of mathematical models. Whether or not a model represents a physical
system, or phenomenon, cannot be a question of whether or not it accurately
mirrors every single detail; such a criterion would be far too strong, not only
because it could hardly ever be met (except in the most simplistic and uninterest-
ing cases), but also because many phenomena � for example in thermodynamics
� are quite robust with respect to minor variations (e.g., among microstates).
Some degree of idealisation and approximation is thus entirely legitimate, yet,
for the reasons described earlier, these are also likely to give rise to steps in
the derivation that are incompatible with the physical attitude. At the same
time, some approximations or idealisations, while mathematically admissible,
may simply be too crude, thereby undermining the representational capacity of
the resulting equations. What is needed, then, is a framework which not only
accommodates both attitudes in such a way as to assign each its proper place,
but which also recognises that both are indispensable � the physical attitude for
giving empirical content to what would otherwise be a bare mathematical struc-
ture, and the mathematical attitude for ensuring the validity of the intermediate
derivational steps.

Pincock attempts to develop such a framework by making mathematical
modelling � that is, the successful derivation of model equations that represent
a physical system � a two-step process. Given that model equations are typi-
cally the outcome of idealisation and abstraction, any attempt to imbue them
with representational content retrospectively, in a way that does not respect
how they were derived, would seem arbitrary, at best loosely aimed at �lling in
details that may have been lost in the course of the derivation. Instead of trying
to vindicate representation on the basis of a set of (post-derivation) equations,
one might look for a more direct criterion for when a model has the potential to
represent. One criterion that might make representation seem inevitable, would
be the existence of an isomorphism between the model and the physical system
or phenomenon it is supposed to represent.2 Under this condition, so one might
argue, a model would not only represent, it would also represent truly. (On this

2On closer inspection, however, isomorphism � at least in its naive form � su�ers from
numerous problems, not least its inability to make sense of the asymmetry of the representation
relation: after all, a successful model represents its target system, not vice versa. (On this
point, see [Suárez 2003, p. 232f.].) For a discussion of more elaborate proposals in the same
vein as isomorphism, see the second half of Section 4.3.
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point, see [Pincock 2005b].) However, a model that has been derived via a series
of idealisations and approximations will typically not be isomorphic to any real
system. In order to nonetheless save the idea that `representation must involve
an isomorphism between some mathematical model and the physical situation
represented', Pincock suggests `that the model described in the derivation (the
derivation model) be distinct from the model that is isomorphic to the physical
situation (the matching model)'. [Pincock 2005, p. 71] On this account, when
dealing with the derivation model MD, we are entitled to adopt the mathemat-
ical attitude and treat it as a wholly mathematical object, since it is not itself
isomorphic to the physical situation P , but is instead only indirectly connected
to the latter, via its relation to the matching model MM .

At �rst sight this seems to be a mere shift in the burden of proof, since
it is now the matching model MM , which must stand in the right relation of
isomorphy to P . There also is the further question of what conditions must be in
place for MD to be related to MM in such a way that the former `inherits', as it
were, the representational capacity of the matching model, and what the nature
of this relation would have to be. Pincock's suggestion that what is needed is
an `acceptable mathematical transformation' from MD to MM , combined with
the condition that MM be isomorphic to `the entire physical situation in all
its details and complexities' [Pincock 2005, p. 71], may be unsatisfactory for
those interested in general criteria of when a concrete representational device
(say, the set of equations that states MD) does, in fact, function as a faithful

(or true) representation.3 Whether such universally applicable criteria can ever
be found is dubious, though. When, exactly, is a mathematical transformation
`acceptable', and when can a model be said to match a physical situation to
the right degree of complexity? These are questions which may have no general
answer, requiring instead attention to the speci�cs of each case.4 Here, it su�ces
to note that, at the very least, the distinction between two kinds of models,MM

and MD, provides a possible way of reconciling the two competing demands
posed by the physical and the mathematical attitude, respectively: to provide
a representation of reality, and to do so in a mathematically accessible way.

2.2 Denotation, demonstration, and interpretation

An alternative way of approaching the question of how models represent would
begin not from the question of how mathematics applies to the world, but from
an attempt to analyse the process of mathematical modelling. One such account,
to be discussed here, has been proposed by R.I.G. Hughes (1997). According to

3On the distinction between (mere) epistemic representation and faithful epistemic repre-
sentation, see [Contessa 2007, p. 54f.]; for a similar distinction between accurate, true, and
complete representations, see [Suárez 2004, p. 767f.].

4Paul Teller makes a similar point when he argues that any search for `intrinsic features of
an object that make it a model' is misguided: `Once this is fully appreciated it becomes clear
that we can get on with the project on the strength of a good supply of clear cases of things
which are used to represent. These will adequately support study the variety of such uses, the
way they function in the scienti�c enterprise, their interrelations, and so on.' [Teller 2001, p.
397]
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this account, the representational capacity of theoretical models is due to the
interplay between three components: denotation, demonstration, and interpreta-
tion. Denotation (more about which later) accounts for the fact that theoretical
elements of a model purport to refer to elements of the physical world; the
possibility of demonstration within a theoretical model � taken for granted in
any application of mathematical derivation techniques � attests to the fact that
models possess an internal dynamic (which allows us to demonstrate theoretical
conclusions); interpretation, �nally, is what relates demonstrated results back
to the physical world. Regarding the earlier discussion of the two challenges any
successful account of mathematical models must meet, the triad of denotation,
demonstration, and interpretation (henceforth: DDI) suggests the following pic-
ture: denotation, as the basic relation whereby certain elements of a model can
`stand for', or `be a symbol of', elements in the physical world, may explain
how physical magnitudes can be `picked out' by mathematical objects, thereby
shedding light on the puzzling fact of the physical world's apparent amenability
to mathematical description. Demonstration and interpretation, by contrast,
jointly account for the derivation of speci�c results, such as empirically testable
predictions. Whereas demonstration `takes place entirely within the model',
interpretation is `a function that takes us from what we have demonstrated [...]
back into the world of things'. [Hughes 1996, p. 328; 333] Interpretation, thus,
may be thought of as `the inverse of denotation' (ibid.).

Applying Pincock's distinction between a physical and a mathematical atti-
tude to the DDI account, one might say that, whereas the mathematical attitude
may well be appropriate as long as one is dealing with issues of demonstration
� that is, as long as one views the mathematical model `from within' � both
denotation and interpretation depend on the physical attitude, at least insofar
as the latter supplies empirically meaningful content. The DDI account, thus,
claims to elucidate both the general character of theoretical models and their
application in speci�c empirical contexts. It does not, however, purport to be an
exhaustive account of theoretical representation. Hughes is careful to point out
that he is `not arguing that denotation, demonstration, and interpretation [are]
individually necessary and jointly su�cient for an act of theoretical representa-
tion to take place'. [Hughes 1996, p. 329] Rather, he makes `the more modest
suggestion that, if we examine a theoretical model with these three activities in
mind, we shall achieve some insight into the kind of representation it provides'
(ibid.). It therefore makes sense to analyse which central aspect of theoretical
models each of the components brings out.

At the heart of the DDI account is the idea of denotation, which Hughes bor-
rows from Nelson Goodman's work on representation in aesthetics, especially
his Languages of Art (1976). Goodman introduces the idea in order to explain
the relation between a painting and what it represents. Having dismissed the
proposal that similarity determines what a painting is a picture of � after all,
`a Constable painting of Marlborough Castle is more like any other picture than
it is like the Castle' [Goodman 1976, p. 5] � Goodman introduces the term
`denotation' as a placeholder for that elusive determining relation. The relation
between a picture and that which it is a picture of, Goodman writes, is close to
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`the relation between a predicate and what it applies to' (ibid.). Importantly,
then, denotation is conceived of as a basic relation, in that it establishes a direct
connection between elements in the world and elements of a model � a connec-
tion that does not rely on problematic notions of similarity. Goodman's claim
that `denotation is the core of representation and is independent of resemblance'
[Goodman 1976, p. 5] may seem to suggest that denotation automatically en-
tails representational success, but this is not the case. (As Goodman makes
clear, denotation is not a su�cient condition for representation, but at most a
necessary condition for certain kinds of representation, cf. [Goodman 1976, p.
25].)

To the extent that theoretical elements denote real features of the world,
the relation they bear to those features is, in a phrase endorsed by Hughes
(and borrowed from Duhem), `only the relation of sign to the thing signi�ed'
[Hughes 1996, p. 330]. Some critics have attacked the DDI account for pre-
cisely this reason; they argue that `the notion of denotation seems to imply that
the relation between model and target is purely arbitrary' [Ducheyne 2006, p.
216]. This criticism, however, misses the mark. To be sure, denotation may

be arbitrary and merely stipulative, but it need not be. In the case of theo-
retical models, denotation will more often than not be guided by background
assumptions and theoretical frameworks, as model-building is typically part of
a larger project of inquiry. This naturally imposes limits on the degree to which
denotation can be arbitrarily stipulated. Furthermore, the criticism overlooks
that, according to the DDI account, it is the triad of denotation, demonstration,
and interpretation, rather than denotation alone, which jointly establishes rep-
resentation. By following Goodman's original advice that `we must examine the
characteristics of representation as a special kind of denotation' [Goodman 1976,
p. 5], the DDI account does not simply equate denotation and representation.
Rather, the idea is that, in order for representation to be attained, denotation
must be put to the test by successful demonstration and interpretation.

Some degree of arbitrariness in denotation is not only to be expected, but
may even be considered necessary for the purpose of model-building. Devising
a theoretical model requires selecting the relevant characteristics of a physical
system, and judgments of relevance may vary depending on explanatory context.
Hence, unless one is committed to the uniqueness of theoretical models � i.e.,
the implausible view that, for any given physical system, there can only ever
be one theoretical model that truly represents it � some freedom in choosing
how to denote elements in the world is clearly desirable. This is not to say
that denotation is always successful, in the sense that it always succeeds in
picking out those elements which are explanatorily relevant, thereby imbuing
the model with representational signi�cance. It would indeed be miraculous if
the success of denotation were guaranteed in this way. But this is not what
the DDI account claims. The point is not that representation can somehow be
established by mere stipulation, but rather that denotation provides a tentative,
prima facie connection with the world, which may then be vindicated in the
course of further demonstration and interpretation.

Of the three components of the DDI account, demonstration is perhaps the
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least problematic, since, in the case of mathematical models, it can largely
be equated with the use of mathematical derivation techniques. While such
techniques may have their own practical and conceptual problems, they do not
directly touch upon the question of how theoretical models represent a reality
external to it; demonstration, to paraphrase Hughes, takes place entirely within
the model in its mathematical formulation. Nonetheless, demonstration is es-
sential, both insofar as it allows for the derivation of results and predictions from
a model, and because it makes salient that a mathematical model, by virtue of
its being a mathematical object, has an internal dynamic. For Hughes, this
insight is fundamental to the use of models in physics in general:

To be predictive, a science must provide representations that have
a dynamic of this kind built into them. That is one reason why
mathematical models are the norm in physics. Their internal dy-
namic is supplied, at least in part, by the deductive resources of the
mathematics they employ. [Hughes 1996, p. 332]

I have argued elsewhere that `a mathematical model may contribute new ele-
ments to the theoretical description of the physical system, or class of systems,
under consideration' � elements which are extraneous to both fundamental the-
ory and empirical data. An example would be what in mathematical physics is
sometimes called `rigorous results and relations' that may link di�erent models
in unexpected ways. It has been argued that such relations may even function
as channels of empirical warrant from one model to another. [Gelfert 2009, p.
515-518.] In addition to such newly contributed elements and relations that
bring out the internal dynamic of a model, there are also the considerable de-
ductive resources contained within mature mathematical formalisms, which will
be discussed in detail in the second half of this paper.

Interpretation, like the other two components of the DDI account, is consti-
tutive of the way theoretical models represent. Without it, demonstrated results
would remain merely formal results within a deductive mathematical structure,
lacking empirical meaning. What is needed is `a function that takes us from
what we have demonstrated [...] back into the world of things' [Hughes 1996, p.
333], and interpretation plays this part. Whereas denotation picks out features
in the world, which are then denoted by elements within a model, interpreta-
tion projects internally derived results back on to the world, where they must
be assessed in terms of their empirical adequacy. There is no guarantee of suc-
cess in either denotation or interpretation. However, when both are successful
� when a model picks out the right features in the world, and interpretation
assigns empirically correct meanings to demonstrated results � denotation and
interpretation may indeed be said to be the inverse of each other, and the model
as a whole may be deemed empirically adequate.

Interpretation is, of course, no simple a�air, as it may require considerable
ingenuity and imagination. In the case of a mathematical model, even when a
result has been successfully derived within the formalism of the model equations,
its empirical interpretation may not always be self-evident. As an example,
consider the case of mathematical divergencies: if one or more of a model's
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variables diverge for certain parameter values, the interpreter may be faced
with the choice of either dismissing it as an `unphysical' result � for example
because the corresponding physical magnitude is recognised as necessarily �nite
for any �nite physical system under consideration � or interpreting it as an
indicator of a real feature in the world (e.g., a phase transition), though perhaps
one that the model is unable to capture (e.g., a phase transition). Just as
in the `inverse' case of denotation, some degree of arbitrariness is thus to be
expected, perhaps even inevitable. Interpretation, however does not operate in
a vacuum: just like denotation, it will be constrained by a range of commitments,
presuppositions, and background assumptions. Some such constraints may be
explicitly built into the model, others may simply be part of the theoretical
framework that underlies the model.5 Interpretation, on the DDI account, is
not merely passively presented with results which it must make sense of; rather,
its operation will be informed, and at the same time constrained, by what has
gone into the construction of the model up to that point.

3 Denotational success and the role of inferential

utility

Earlier I mentioned a line of criticism according to which the DDI account
renders the relation between model and target `purely arbitrary', given that
denotation carries with it an intrinsically stipulative element. It would, how-
ever, be hasty to conclude that the DDI account fails on this ground, since
the DDI account construes successful representation as the joint e�ect of the
three main ingredients, denotation, demonstration, and interpretation. That
is, demonstration and interpretation may provide the DDI account with the
internal resources to keep `in check' whatever element of arbitrariness is intro-
duced by denotation. Still, there remains the very real worry that, by making
denotation the decisive element by which a model fundamentally acquires rep-
resentational force6 (or directedness), the DDI account cannot exclude spurious
cases, where a failure of denotation � for example, because it `misses the tar-
get' (or targets the wrong sort of entity or phenomenon) � may go undetected
during the later stages of demonstration and interpretation, simply as the re-
sult of fortuitous but non-accidental circumstances of the case at hand. If this
sounds too abstract, the same point can be put more concretely, in the form
of a question: Why should only denotation, not demonstration and interpreta-
tion, be involved in establishing the fundamental representational directedness
of a model? After all, scienti�c practice appears to be replete with examples
where demonstration and interpretation determine to a signi�cant degree what
a model is a model of � cases, in other words, where demonstration and inter-
pretation constrain the direction of �t. Whether model and target stand in a

5On the notion of constraints in scienti�c modelling, see also Tarja Knuuttila's contribution
in this volume.

6The expression `representational force' is borrowed from (Suarez 2004).
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fundamentally representational relationship, is thus not a matter of denotation
alone.

3.1 Denotational indeterminacy

As an illustration of the sort of problem that a�icts the idea of denotation as the
ultimate source of representational force, let us consider the following example,
which I borrow from Suárez (2004). Suppose that one wishes to represent the
movement of two ships on the sea in the form of a physical model, using sim-
ple ingredients such as two pens and two pieces of paper. Intuitively, this task
seems easy enough: one need only stipulate, through an act of denotation, that
the paper represent the sea, and that the two pens represent the ships. Once
the denotational relationship has been �xed, one can then go ahead and draw a
number of (though, given the model's simplicity, perhaps not very many) correct
inferences `about the ship-on-sea system on the basis of a consideration of the
pens-on-paper system, such as, for instance, that the trajectories of the ships
may cross and that they may crash' [Suárez 2004, p. 772]. This much seems
uncontroversial and quite straightforward, perhaps even trivial. However, given
that denotation is explicitly construed as an alternative to global criteria such
as similarity and isomorphy, there would appear to be no constraint that would
stop us from inverting the denotational arrangement � that is, let the pieces
of paper represent the ships, and the pens the sea � even though this choice
would seem counterintuitive, to say the least. As Suárez observes, `it seems so
because it is less informative, since the relative movements of pens and paper
can not allow us, for instance, to infer the possibility that the two ships may
crash' [Suárez 2004, p. 772]. Denotation, and the multiplicity of denotational
arrangements it entails, thus appear to give rise to a form of denotational inde-
terminacy. This suggests that whether or not a model A successfully represents
a state of a�airs B is at least in part determined by A's inferential utility, where
the latter is the degree to which `A allows competent and informed agents to
draw speci�c inferences regarding B ' [Suárez 2004, p. 773]. It also suggests
that, without inferential utility as a constraint on model-construction, denota-
tion may fall foul of problems of indeterminacy.

One might worry whether the indeterminacy of denotation and the result-
ing ambiguity of denotational arrangements are all that signi�cant. Surely, one
might argue, `unnatural' denotational arrangements � such as the paper's (in-
stead of the pens') representing the ships in the pens-and-paper model � can
easily be ruled out on the basis of simple criteria, such as similarity, which
do not require deployment of the full inferential apparatus. While some basic
recognitional capacity is needed in order to recognise a �at piece of paper as
more similar to the sea's surface than a compact pointed object such as a pen,
such a capacity hardly requires much in terms of the active drawing of infer-
ences. It is, after all, what children do intuitively when they play `battleships'
using pen (or pencil marks) and paper!7 However, such a response to the worry

7Responses on the basis of psychological experience, including subjective assessments of
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about denotational indeterminacy would be inadequate. While it may be the
case that simple physical models, such as the pens-on-paper model, do not pose
serious denotational problems, the problem of denotational indeterminacy cuts
much deeper. There are good reasons to think that the problem will become
more pertinent as the level of abstraction increases, not least because simple
criteria such as similarity quickly lose their applicability.

3.2 Denotation and scienti�c realism: an example

In order to drive home the point about the reality of worries about denota-
tional ambiguity, let us digress brie�y and consider a concrete example from
physics, speci�cally the case of `quasi-particles' in condensed matter physics.
When modelling solid state systems (e.g., metals), one often represents the col-
lective behaviour of correlated electrons in terms of the so-called Fermi sphere.
In accordance with fundamental constraints such as the Pauli exclusion princi-
ple, correlated electrons in a solid can only occupy certain (mutually exclusive)
energy states. If a certain single-particle state is fully occupied, a new electron
that is added to the system must occupy the next-highest energy state that is
available. In a system of many electrons, for example a solid with of the order
of 1023 particles, a large number of neighbouring states will thus be occupied.
Given that, in so-called reciprocal (k-) space, the energy Ek of an electron varies

with the distance of a particle's state (~k, σ) from the origin (k = 0), the visual
model that is typically invoked is that of a sphere containing all occupied elec-
tron states, centered around the single-particle ground state k = 0. At zero
temperature, when the system occupies the many-body ground state of lowest
total energy, this Fermi sphere is clearly de�ned, in that it has a sharply de�ned
surface, all occupied states inside, none outside. In the presence of interactions
and �uctuations, however � in other words, when the system is at �nite (non-
zero) temperature � the sphere will be deformed, and some electrons will be
excited into states outside the original sphere, leaving behind an unoccupied
state inside.

Due to the strong correlations that exist between the constituent electrons in
a solid, various disturbances and excitations from the ground state can give rise
to a range of collective responses of the system, perhaps the most important of
which are instances of quasi-particle behaviour. Such behaviour is characterised
by the (chimerical) appearance of `new' particles, which appear to have mea-
surable properties such as a virtual `e�ective mass', average life-time, electric
charge, and so forth. These so-called quasi-particles behave just like `normal'
particles across a wide range of measurements and experiments, and their e�ects
can be reproduced experimentally in a robust and reliable manner. For example,
removing an electron from the system, and with it its negative electrical charge,

inferential utility, can only go so far. As I shall suggest in the next section, a more fruitful
place to look for constraints on denotational arrangements would be in their material or
formal characteristics, insofar as these embody certain inferential strategies and theoretical
commitments. As I will claim in Section 4, this is one of the features that make mature
mathematical formalisms a powerful representational resource.
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would appear to leave an `electron hole' behind � which may then `act' as a pos-
itively charged quasi-particle, and as such may, for example, form bound states
with other electrons (forming so-called `excitons'). However, the existence of
such quasi-particles is illusory, insofar as quasi-particles are mere artefacts of
the collective behaviour of the correlated many-electron system: their apparent
properties and e�ects do not have independent reality, but are simply functions
of the total many-electron system. (See [Gelfert 2003], for a detailed argument
to this e�ect; and [Falkenburg 2007] for a di�ering view.) This is most obvious
in the case of an electron hole, whose causally relevant features are simply due
to the absence of an electron, and not the result of the coming into existence
of an independent new kind of entity; the same applies, by extension, to other
quasi-particles. It must therefore be conceded that a quasi-particle, just like an
absence, to paraphrase David Lewis, `is nothing relevant at all, and therefore
cannot furnish causal relata' [Lewis 2004, p. 282]. While this is not the place to
explore the rami�cations, metaphysical and otherwise, of `quasi-entities' such as
holes, absences, and quasi-particles, the example is nonetheless instructive with
regard to the role of denotation, e.g. in ascertaining referential success. Deno-
tation as the basis of representation has occasionally come under �re for being
a success term, e.g., for positing `a sharp di�erence between a representation of
a real object � where the source denotes the target � and a �representation� of
a �ctional object, which does not involve the denotation of what is purportedly
represented' [Suárez 2004, p. 770]. Indeed, to mention just one critic of deno-
tation, Suárez regards it as a crucial advantage of a thoroughgoing inferential
conception of representation that, unlike a denotation-based account, it is capa-
ble of dealing with instances of �ctional representation � since �ctional objects
(say, the concept of a `unicorn') can, of course, feature in inferences, even if they
do not correspond to any objects in the real world.

But even if denotation cannot account for all kinds of representation, such as
those involving �ctional objects, it may still turn out to be a central ingredient
in scienti�c representation. For, more often than not, denotational success is
a criterion of scienti�c success; while it is stipulative in the �rst instance, it
needs to prove its mettle in subsequent inquiry. The example of quasi-particle
behaviour in a correlated system illustrates this point nicely: even though the
collective behaviour of the system mimicks particle-like behaviour, the scienti�c
challenge lies precisely in explaining how such emergent behaviour can arise
from a system of simple constituents, without accepting a host of new (�ctitious)
quasi-entities as on a par with what we know, on independent grounds, to be the
fundamental constituents of matter. In this particular case, at least, it would
then appear that denotational success is one criterion by which to tell what is
real from what is not real, whereas an inferential conception of representation,
according to which `there is absolutely no di�erence in kind between �ctional and
real-object representation � other than the existence or otherwise of the target'
[Suárez 2004, p. 770] might not alone su�ce to account for the comparatively
higher standards of realism that apply in the case of scienti�c representation.

On the characterisation o�ered here, one of the functions of successful de-
notation is to furnish reference; an element A of a model can only be said to
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`stand for', i.e. successfully denote, an aspect or ingredient of a physical system
(or class of physical systems), if A succeeds in picking out a relevant feature
of reality. Matters of accuracy or completeness are of secondary importance
at this denotational stage of scienti�c modelling, though they will inevitably
become important later on � especially when one tests those (quantitative and
qualitative) results that have been derived within a model, for example by com-
paring them against experimental results. Within the limits of what is required
for referential success, denotation allows for considerable �exibility and can be
multiply realised. Some critics have suggested that, while denotation may have a
place in artistic representation, where `almost anything may stand for anything
else' [Goodman 1976, p. 5], it does not have a role to play in scienti�c models.
After all, `if the appropriate relationships are not in place between the relevant
properties then the �model� will not be deemed scienti�c' [French 2003, p. 1478].
But this is a platitude, not a valid criticism: Of course, any attempt at represen-
tation, whether in art or science, will be subject to constraints, some of which
are conventional in character, while others are due to the speci�c � aesthetic
or cognitive � goals associated with the (artistic or scienti�c) representation in
question. In the case of scienti�c representation, denotation needs to be con-
strained by demonstration and interpretation (as the DDI account suggests), as
well as by other constraints (for example, the commitment to the referential suc-
cess of central elements of a model, as in the quasi-particle case above). Given
that scienti�c models serve cognitive goals, inferential utility, too, can act as a
constraint on model-based representation. In other words, one should be careful
not to overstate the antagonism that exists between denotation-based accounts
of scienti�c representation on the one hand, and inferential accounts on the other
hand. Both have their place in accounting for scienti�c representation, and may
even be complementary. In much the same way that mere denotation may not
be enough to establish representational force, one might argue that inferential
utility alone, without a denotational basis, may not su�ce for the success of a
model. A successful scienti�c model, I want to submit, is one that allows us to
draw inferences and gain information about its target system, where the latter
may be a speci�c physical system or itself a (generalised) class of phenomena.

3.3 The heterogeneous character of scienti�c representa-

tion

What inferential and denotational accounts have in common is their acknowl-
edgment that model-based representation depends for its success on a variety
of factors � such as the cognitive goals of model-users, referential success, and
interpretation � which cannot easily be assimilated, e.g., to a purely structural-
ist account based on isomorphism. Structuralist accounts may well be adequate
for a suitably narrow class of scienti�c models, perhaps comprising only those
kinds of models where `messy' problems of interpretation and denotational inde-
terminacy no longer arise. In his discussion of the DDI account, Steven French
asks: `One must also include some account of interpretation, but if one is going
to do that, why bother with denotation to begin with? Why not return to an
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account based on isomorphism?' [French 2003, p. 1479] Similarly, in a foot-
note to the same paper, French refers to work by Hendry and Psillos in which
they develop an `interactive view' [Hendry 1999], according to which theories
and models combine elements from di�erent representational media: `On such
a view, representation might be analyzed in terms of some combination of de-
notation and isomorphism although it is not clear quite how this would work.'
[French 2003, p. 1478] Such rhetorical questions and quick dismissals, however,
only carry weight if one is already operating on the assumption that denotation,
interpretation and, by extension, considerations of inferential utility � in spite of
their being conceptually distinct from isomorphism � are incapable of giving rise
to any interesting questions of their own. What needs to be realised, however,
and what has perhaps not yet been adequately acknowledged, is that the multi-
ple accounts of representation discussed in the present paper can be thought of
� much like Hendry and Psillos's `interactive view' � as attempts to make sense
of representation as a heterogeneous phenomenon. The mere fact that this is
an ongoing project which does not argue towards a �xed conclusion and still
needs to address many open questions, should not be held against it; such is the
nature of live philosophical projects. The real challenge, then, consists not in
concentrating on cases where one of the candidate sources of representational
force � where it be denotation, inferential utility, or any of the other possible
sources � fails, but in investigating the interplay between them.

Recognising that successful representation is typically the joint e�ect of an
interplay of multiple factors, is necessary, not least in order to account for the
diversity of actual scienti�c models. Most philosophical discussions of scienti�c
models � this paper included � tend to focus on theoretical or mathematical
models. However, just as it would be hasty to dismiss examples that cannot be
assimilated to one's preferred (e.g., structuralist) account of representation, so
it would be careless to dismiss a whole tradition of philosophical thinking about
mechanical and material models, simply on the ground that such models are
speci�ed directly in their materials, rather than in their relation to theory. The
denotational and inferential accounts of representation can be usefully applied to
such material models, as has recently been argued by Davis Baird (2004). Baird
discusses both the example of orreries � devices which mechanically represent
the motion of various planets and moons � and Watson and Crick's (physical)
model of the DNA double helix. In those cases it is entirely appropriate to say
that `the sticks in Watson and Crick's [double-helix] model denote bond lengths,
not rigid metallic connections', and that one can use an orrery � in a hands-on
way, by setting it in motion � `to demonstrate [...] the shape of the moon's orbit
relative to the sun'. [Baird 2004, p. 38; my italics.]8 As James Watson reports
in his well-known �rst-person account, The Double Helix (1968), manipulating
the physical model became not just a convenient shortcut for theoretical rea-
soning based on empirical data, but an independent source of inferential utility:

8It is again telling that some structuralist critics relegate denotation to, at best, the seman-
tic realm of `how words represent' [French 2003: 1478] � i.e., of linguistic meaning � thereby
ignoring the manifestly denotational aspects of some of our non-linguistic ways of interacting
with the world.
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`The α-helix had not been found by only staring at X-ray pictures; the essential
trick, instead, was to ask which atoms like to sit next to each other. In place of
pencil and paper, the main working tools were a set of molecular models super-
�cially resembling the toys of preschool children.' [Watson 1981, p. 34] From
the philosophical armchair, tactile manipulation of a physical model may look
like a poor substitute for theoretical derivation, but it may acquire paramount
importance `when conceptual manipulations are impossible either for lack of a
theory or because analytical manipulations would be too di�cult' [Baird 2004,
p. 39]. Either way, material models as well as theoretical models allow their
user to articulate and infer knowledge of the part of the world they represent;
successful denotation is an important component in this relation, as is inferential
utility, which allows for the extraction of information about the target system.

4 Mathematical formalism as interpretative re-

source and inferential practice

Let us step back for a moment and take stock. In the preceding sections, I argued
that representation needs to be understood as a heterogeneous phenomenon,
which, except in trivial cases, is brought about by the presence of more than
one source of representational force. I pointed to several recent proposals in
support of the thesis that no single source � denotation, inferential utility, let
alone similarity � is enough to guarantee representation. Hughes' DDI account
goes some way towards acknowledging that representation is achieved through
the interplay between three di�erent theoretical activities. Pincock's division of
the modelling process into a sequence of matching, derivation, and application
models, along with his distinction between a `physical' and a `mathematical'
attitude, likewise recognises that di�erent theoretical attitudes and activities
need to combine to give rise to successful representation. That representation
cannot be achieved by stipulation alone, but needs to be both underwritten
by referential success (at least of the most central ingredients of a model) and
informed by considerations of inferential utility, was demonstrated by examples
of what I had tentatively referred to as `denotational indeterminacy'.

Of those who acknowledge � at least implicitly � the heterogeneous nature
of representation, Suárez goes perhaps the farthest: In the course of defending
a de�ationary account of scienti�c representation, he argues that, in light of our
failure to come up with universal necessary and su�cient conditions for rep-
resentation, we should conclude that there are `no deeper feature to scienti�c
representation other than its surface features' [Suárez 2004, p. 769] � where the
dominant `surface feature' of a representational model is its inferential utility
as a source of `surrogate reasoning'. This inferential conception of scienti�c
representation purports to be at the same time de�ationary and pragmatic:
It is de�ationary, insofar as it only aims to identify minimal requirements for
representation, without assuming that these must take the form of necessary
and su�cient conditions, let alone be formulated in terms of isomorphism and
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similarity (see also [Suárez 2003]); and it is pragmatic, insofar as inferential
utility varies across groups of `competent and informed agents', whose ability to
draw valid inferences regarding B on the basis of reasoning about A is itself `a
pragmatic skill that depends on the aim and context of the particular inquiry'
[Suárez 2004, p. 773]. Suárez makes a convincing case that a universal `one-
size-�ts-all' account of scienti�c representation is likely to be an illusion, and
limits himself to identifying at most two general necessary conditions � repre-
sentational force and inferential utility � that need to be in place for scienti�c
representation. What generates representation in each successful case, beyond
the mere ful�llment of these two necessary conditions, is not something that can
be prejudged by abstract analysis: `In every speci�c context of inquiry, given
a putative target and source, some stronger condition will typically be met;
but which one speci�cally will vary from case to case.' [Suárez 2004, p. 776]
While I concur with Suárez that the search for a substantial account of scienti�c
representation � that is, an account in terms of universal necessary and su�-
cient conditions for scienti�c representation � is unlikely to succeed, I believe
that many positive instances of representational success can nonetheless be ex-
plained, in a uni�ed way, by identifying, across a range of speci�c cases, what it
takes to achieve representation.9 What gives unity to model-based representa-
tion as a successful scienti�c practice, I suggest, is not an abstract requirement
(e.g., the presence of isomorphism, similarity, interpretation, etc.), but instead
is a matter of general features of the process of model construction. In the re-
mainder of this paper, I shall argue that, more often than not, the deployment
of a mature mathematical formalism during the process of model construction
and articulation, plays an important role in achieving the kind and degree of
uni�cation required for scienti�c representation.

4.1 Hesse on mathematical formalism

As the starting point of my defence of mathematical formalisms as a uni�catory
force, I shall draw on some of the early work on the philosophy of scienti�c
models, in particular the work by Mary Hesse. While Hesse is best-known for
her view of models as analogies [Hesse 1963], much of her work also contributes
to an analysis of the role of mathematics in physics. Thus, in her 1953 paper
`Models in Physics', Hesse sets out to defend two theses, the second of which
is the suggestion that `most physicists do not regard models as literal descrip-

tions of nature, but as standing in a relation of analogy to nature' [Hesse 1953,
p. 201; emphasis original]. It is her detailed defence of this second claim that
sparked a long-lasting debate over the analogical character of models. Much less
has been made of Hesse's �rst claim, however, which asserts that `mathematical
formalisms, when used as hypotheses in the description of physical phenom-

ena, may function like the mechanical models of an earlier stage in physics,

9This di�erence is partly a matter of whether one wishes to emphasise the role played by
speci�c features of a given model, or whether one is more optimistic about the possibility of
identifying general features that generate successful representation for a whole class of models.
(See also [Suarez 2010, p. 98].)
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without having in themselves any mechanical or other physical interpretations'
[Hesse 1953, p. 199; emphasis original]. It is this claim � which points to the
signi�cance of extant mathematical formalisms in physics � that I wish to focus
on in the remainder of this paper. In particular, I shall argue that the existence
of mature mathematical formalisms often plays an important role in bringing
about successful representation by mathematical models. In order to make this
case, I shall have more to say about what the term `mathematical formalism' is
meant to capture, and how Hesse's suggestion can be adapted to the contempo-
rary debate. Before delivering on this promise, however, I shall try to unpack
Hesse's position in a little more detail.

Hesse's early work must be understood against the backdrop of a tradi-
tion that largely equated scienti�c models with either material or mechanical
models. On this view, which derives from 19th-century scienti�c usage, a typ-
ical scienti�c model is `a (real or imagined) concrete, material representation
of something' [De Regt 2005, p. 215]. Obvious examples would include the
billiard-ball model of an ideal gas, or Maxwell's vortex model of the ether. By
the time Hesse embarks on her analogies of models and analogies, the term
`model' has proliferated beyond the realm of the mechanical or `picturable' to
also include, for example, quantum-mechanical models. Indeed, it is this pro-
liferation of the use of the term `model' � expressed in the claim that a model
can be `any system, whether buildable, picturable, imaginable, or none of these'
[Hesse 1963, p. 21]� which motivates Hesse's project. Her indebtedness to the
traditional view of models as concrete or picturable `stand-ins' for real systems,
however, does shine through in her characterisation of the role of mathematical
formalism in many of the newer scienti�c models:

The question then arises, what takes the place in these physical
theories of the pointers towards further progress which are provided
by an easily pictured mechanical model? I shall suggest that what
takes their place is provided by the nature of the mathematical for-
malism itself � any particular piece of mathematics has its own ways
of suggesting modi�cation and generalisation; it is not an isolated
collection of equations having no relation to anything else, but is
a recognisable part of the whole structure of abstract mathematics,
and this is true whether the symbols employed have any concrete
physical interpretation or not. [Hesse 1953, p. 200]

While I shall subsequently move beyond Hesse's account of mathematical for-
malism, I here wish to point to three elements of the above quote that strike
me as especially instructive. First, Hesse credits mathematical formalism with
providing `pointers towards further progress', similar to the way picturable me-
chanical models in the past have suggested new avenues of research to those who
devised them. The tentative language is important here: picturable mechanical
models as well as mathematical formalism point towards progress and suggest

new steps of modi�cation and generalisation, rather than making progress in-
evitable or entailing speci�c modi�cations. At the same time � this is the second
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point, which is at least implicitly present in the quote from Hesse � mathemat-
ical formalism not merely accommodates whatever hypotheses one may already
have about the system in question, but instead also constrains the ways in which
a system can be represented. As a `particular piece of mathematics' each formal-
ism `has its own ways of suggesting modi�cation and generalisation' (ibid.; my
emphasis); some modi�cations may go beyond, or even `violate', the constraints
that hold for a given formalism, without thereby being logically or mathemati-
cally non-permissible.10 Note also that a mathematical formalism need not be
identi�able with any particular branch of mathematics as such; `formalisms', in
the sense discussed here, will typically be more local than any branch of mathe-
matics such as topology, number theory, algebra, etc. For the same reason, not
just any application of mathematics to nature will count as employing a math-
ematical formalism; as Hesse indicates, a formalism will be `a recognisable part
of the whole structure of abstract mathematics', not the totality of mathematics
itself.11 Finally, as a third observation in connection with Hesse's quote, I wish
to emphasise the pragmatic dimension of mathematical formalism. A piece of
mathematics, such as an interpreted set of equations in conjunction with rules
and heuristics for their application, must be recognisable as such by the user;
its value lies in its utility to the user, for example in the extent to which it
enables the user to derive empirical results or to pursue those modi�cations and
generalisations that Hesse identi�es as `pointers towards further progress'.

4.2 Mathematical formalisms vs. mathematical techniques

and formal frameworks

In order to gain a better understanding of the signi�cance of mathematical
formalisms in model-based science, I shall contrast what I take to be three main
heuristic uses of mathematics in scienti�c inquiry. Each of the three has its own
distinctive way of shaping the future course of inquiry, either by shaping its
immediate goals or by constraining its possible outcomes. While there may be
some borderline cases that cannot be classi�ed unambiguously, I believe that, in
most cases of actual scienti�c practice, it will be su�ciently clear which of the
three categories an instance of applying mathematics belongs to. As labels for
these categories, I suggest a trichotomy consisting of the terms `mathematical
techniques', `formal frameworks', and `mathematical formalisms'. I shall brie�y
describe each category, characterise its role in scienti�c inquiry, and illustrate
its signi�cance on the basis of an example.

Scientists often use the expression `mathematical techniques' as an umbrella
term for a wide variety of mathematical approaches. A quick database search
for the term `mathematical techniques' returns the following (needless to say:
incomplete) list of examples: `the Fourier transform', `regression analysis', `cal-

10This will become clearer once I discuss examples of extant mathematical formalisms in
the next subsection.

11Hence, when I speak of the `uni�catory power of mathematical formalism', as I shall later
in this section, I do not intend this to be synonymous with Eugene Wigner's phrase of the
`unreasonableness e�ectiveness of mathematics in the natural sciences'.
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culus', `partial di�erential equations', `method of least squares', `Green's func-
tion techniques', `discretization', and so forth. Clearly, then, actual scienti�c
usage is of limited usefulness in assigning a precise meaning to the term. How-
ever, even though the individual items on this (or any similar) list may not seem
to have much in common with one another, the investigative contexts in which
scientists help themselves to such `mathematical techniques' nonetheless share
certain general characteristics. Typically, and by no means trivially, references
to `mathematical techniques' usually occur in contexts where the generation of
(often numerical) results is the main concern. Thus, mathematical techniques
may be employed to reduce complexity, predict numerical outcomes, extract
data, or calculate expectation values. What counts as a `result' � that is: as an
outcome that will bring inquiry, at least momentarily, to an end � depends on
the overall goal of the investigator: for a mathematical physicist, being able to
write down a solution in a mathematically closed form might su�ce, whereas a
computational physicist might not be content until a numerical value (perhaps
within a certain margin of error) has been calculated.12

For the purpose of the present argument, I shall understand by `mathe-
matical techniques' those outcome-oriented uses of mathematics that aim at
generating empirically adequate results, either numerically or derived through
approximations, which may or may not be considered ad hoc by the lights of
fundamental theory. With mathematical techniques, given the wide range of ap-
proximations and methods employed across the sciences, it is di�cult to single
out any one example in particular. Most approximation techniques for systems
of di�erential and integral equations (including discretization and �nite element
methods) would fall into this category, as would variational methods which, in
a purely formal way, map analytically intractable problems onto optimization
problems that may then be solved numerically. It is not untypical, within the
class of `mathematical techniques', to �nd a lot of continuity between techniques
for deriving results and methods of data analysis. Thus, techniques such as ap-
plied factor analysis may be understood equally as `[1] a tool for uncovering the
order, patterns or regularity in data or [2] as a mathematical mold of casting
scienti�c theory' [Rummel 1970, p. 12]. Indeed, one could argue that it is in
the nature of the `outcome-orientedness' of mathematical techniques, as de�ned
here, that little distinction is made between results that have been derived from
fundamental theory, and data that have been obtained otherwise, since ideally
there should be a perfect �t between them.

There is a stark contrast between the application of mathematical techniques
with the purpose of generating results and the use of mathematics as a provider
of what I shall call a formal framework. Unlike in the case of `mathemati-
cal techniques', scientists do not themselves typically use the term `formal (or
mathematical) framework'; hence, whereas in the former case, it was necessary
to `clean up' scienti�c usage in order to narrow down the meaning of the term,
in the case of the notion of `formal framework' some degree of `extrapolation'

12Tarja Knuuttila, in her contribution to this volume, links the `results-orientedness' of
much of scienti�c modelling to the `concrete manipulability' of models.
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will be necessary in order to make clear what element of scienti�c practice the
term is supposed to capture. To this end, it will be useful to begin by draw-
ing a few contrasts. Whereas mathematical techniques are typically tailored to
speci�c empirical contexts, formal frameworks are usually established in a more
`global' way, without much regard for the details of any particular empirical sit-
uation. Also, whereas the choice of mathematical techniques often takes place
well into the process of inquiry � for example, when it turns out that a deriva-
tion from `�rst principles' is too complex and that numerical approximations
need to be made � the choice of a formal framework often precedes the formu-
lation of more speci�c problems, which may subsequently be tackled. Finally,
whereas mathematical techniques are usually evaluated in terms of their useful-
ness for reproducing empirically adequate results, formal frameworks typically
have a more strongly normative �avour, in the sense that they are either under-
written by general theoretical commitments (though not necessarily derivable
from fundamental theory) or may even be constitutive of speci�c theoretical
research programmes. A good example of the use of mathematics for the pur-
pose of establishing formal frameworks is the signi�cance, within certain areas
of fundamental physics, that has been (and continues to be) attached to consid-
erations of symmetry. Mathematical symmetries are, of course, an integral part
of many fundamental laws of contemporary physics, so it may seem that argu-
ments from symmetry constitute simply an appeal to fundamental theory rather
than an instance of imposing a (mathematical) formal framework. However, if
one looks at the history of modern physics, it becomes clear that in crucial pe-
riods of, for example, the evolution of modern quantum theory, group theory �
i.e., the mathematical theory of symmetry � provided a formal framework for
the development of physical theory itself.

The example of group theory as a formal framework for the formulation of
quantum mechanical problems deserves some more attention. An important
historical role is played by the mathematician Hermann Weyl. (For an insight-
ful discussion of the relation between mathematics in physics in Weyl's work,
see [French 1999].) In his monograph The Theory of Groups and Quantum Me-

chanics (�rst published in German in 1928), Weyl provides what is perhaps best
described as an `embedding' of the nascent quantum theory of the atom into
the mathematical framework of group theory. Many of the complex phenomena
found in atomic physics � such as the �ner details of atomic spectra � were
thought to be analytically (and computationally) intractable using the by then
established formalism of the Schrödinger equation. Starting from the heuris-
tic recognition that, when it comes to systems of several electrons interacting
with one another as well as with the nucleus of an atom, `nothing is known
on a purely theoretical basis (apart from a rough estimate of their positions)
except their symmetry properties' [Weyl 1928, p. 181], Weyl proceeded to give
an account in terms of symmetry properties `independently of the dynamical
structure of the physical system under consideration' [Weyl 1968, p. 276]. The
very fact that this approach was neither tailored to speci�c empirical cases nor
directly entailed by the known dynamical laws of quantum theory, came to be
seen as an advantage: Group theory, according to Weyl, revealed `the essential
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features which are not contingent on a special form of the dynamical laws nor
on special considerations concerning the forces involved' [Weyl 1928, p. xxi]. Its
very independence from � perhaps even disregard for � speci�c empirical detail,
along with an at best loose relationship to what was known about fundamental
theory at the time, allowed group theory to function as a formal framework
for atomic physics and, later, nuclear physics, where the pursuit of symmetry
relations (for example via the standard model of elementary particles) became
a guiding principle of theorising.13

The two uses of mathematics distinguished thus far � as, on the one hand,
a set of techniques for the `local' generation of speci�c results and, on the other
hand, a formal framework for physical theorising � de�ne di�erent ends of a
spectrum of deploying mathematics in scienti�c inquiry. I now wish to turn to
a third mode of using mathematics in science, which occupies a middle posi-
tion between the two extremes outlined above, but which at the same time has
characteristic features that cannot be reduced to an admixture of elements from
either mathematical techniques or formal frameworks. I shall refer to this use
of mathematics in science as the deployment of a mathematical formalism. As
with the two previous cases, some care must be taken to give a speci�c meaning
to the term `mathematical formalism'. `Mathematical formalism', in the present
context, is to be understood as a physically interpreted formalism, i.e. as more
than merely the deployment of the formal language of mathematics. It must
be su�ciently general to be applicable to a range of physical problems; at the
same time, it will typically fall short of universality, in the sense that certain
cases � though logically and physically permissible � nonetheless do not lend
themselves to the application of the formalism. It thus follows that a math-
ematical formalism will typically include rules and heuristic assumptions that
are not themselves part of either the mathematical framework or entailed by
the `underlying' fundamental theory.

The general features mentioned so far are inferred from the assumption that
mathematical formalisms inhabit a middle ground between outcome-oriented
mathematical techniques and formal mathematical frameworks. What needs to
be shown is that such a middle ground does indeed exist, and this can be done
by way of example. In the remainder of this subsection, I wish to discuss in some
detail what I take to be a good example of a mature mathematical formalism
in physics, in the sense that has been discussed so far. The example I have in
mind is the formalism of creation and annihilation operators in quantum many-
body physics. I shall �rst give a theoretical justi�cation (or rather: motivation)
for this formalism, before giving examples of how it is deployed in practice.
However, it is worth emphasising beforehand that the mere possibility of giving a
theoretical justi�cation for a given formalism does not entail that any particular
application of that formalism is best understood as a `direct' application of
fundamental theory to a speci�c problem. A mature formalism will typically
be set up in such a way that its output will `automatically' satisfy certain

13This applies to the Standard Model of particle physics as well as its proposed supersym-
metric extensions.
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theoretical desiderata; at the same time, there may be certain theoretically
permissible situations or scenarios that cannot be adequately represented using
the formalism in question. A formalism, one might say in a turn of phrase that
has usually been reserved for scienti�c models, mediates between theoretical
`�rst principles' and descriptions of empirical situations in their full complexity.

With this caveat in mind, I shall turn to a description of the formalism of
creation and annihilation operators and their place in the quantum physics of
many-body systems. While the formalism of second quantization is typically as-
sociated with quantum �eld theory, for example in high-energy physics, its ana-
logue in the case of quantum many-body systems has received far less attention
in the philosophical literature. The use of creation and annihilation operators
is an attempt to extend the formalism of second quantization to strongly cor-
related many-body systems, such as delocalised electrons in a metal. In such a
situation, the electrons can be thought of � to a (very crude) �rst approximation
� as being uniformly spread-out across the crystal lattice of the solid. It is then
possible to analyse the behaviour of this uniform `sea' of electrons in terms of a
superposition of `electron waves', each characterised by a unique wave vector ~k
(as well as a spin variable σ). One may then describe changes in the system, for
example an energy excitation caused by a perturbation of the system, in terms
of the creation and annihilation of new electron waves � adding and removing
contributions to the superposition. In quantum mechanics, these processes are
described by operators acting on the many-body quantum state of the system.
It is these operators that, for obvious reasons, are known as creation and an-

nihilation operators, and are symbolized by â†~k,σ
and α̂~k,σ, respectively. This

mathematical description of the di�erent components of the electron system
stresses the collective nature of its dynamics.14 As representations of fermions
(spin-1/2 particles such as electrons), the operators must satisfy certain anti-
commutation relations in order to satisfy the basic constraints of fundamental
theory.

So far, I have only indicated which mathematical framework � in this case,
operator algebra � the formalism draws on, and how its symbolic conventions are
to be understood. However, for a physically interpreted mathematical formalism
to emerge, it is necessary that certain theoretical, or other (e.g., methodological),
commitments are embodied in the rules and criteria for what constitutes a mean-
ingful application of the formalism. As I have already indicated, mathematical
formalisms occupy a middle ground between global mathematical frameworks
and speci�c local applications of mathematical techniques; their usefulness to,
for example, a scientist interested in modelling a speci�c class of physical sys-
tems, consists in narrowing down the wide range of what is logically or physically
permissible (as judged from fundamental theory), without thereby precluding
the application of the same formalism to di�erent speci�c empirical situations.

14Thanks to the regularity of the crystal lattice, however, one can perform a (discrete)
Fourier transformation, which maps the representation back onto individual electrons associ-
ated with lattice sites. Hence, even though the electrons are delocalised, we may nonetheless

speak of the creation (â†i,σ) and annihilation (âi,σ) of an electron of spin σ associated with
lattice site i.
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It is crucial, then, that a formalism provides both additional constraints and
su�cient �exibility to allow for its application to di�erent target systems. By
constraining the process of inquiry without tailoring it to any one empirical
situation in particular, the choice of mathematical formalism may itself play an
important heuristic role, for example in strategies of model-building.

As an example of the constraining role of mathematical formalism, I wish to
discuss the case of the conservation of particle number in quantum many-body
systems. Condensed matter physicists know on independent grounds that, in
the systems they are trying to model, particles (=electrons) cannot simply be
annihilated completely or created out of nothing (at least not by the mecha-
nisms that govern the dynamics in a solid at room temperature). However,
nothing in the mathematics of operator algebra per se rules out the possibility
of varying particle number. Indeed, if one looked in isolation at how creation
and annihilation operators are mathematically de�ned, then, on the standard
interpretation of quantum operators, their net e�ect would be such that, con-
sidered individually, they would seem to describe states where an individual
electron has been created from nothing, or destroyed without trace, thereby
violating conservation of particle number. It is, of course, clear that any mathe-
matical approach that could not account for the fact of particle conservation at
low energies would be of little representational value for the description of real,
existing many-body systems. However, the mathematical formalism of creation
and annihilation operators goes beyond the mere mathematical de�nition of the
operators themselves, in that it also includes heuristic rules for the deployment
of such operators. One such rule states that creation and annihilation operators
can never occur individually in the equations of our mathematical model, but
only in pairs. This way, an electron that is `annihilated' at one point in the
system will be simultaneously `recreated' at a di�erent point in the system, and
at no point is there a violation of particle number. Because the mathemati-
cal formalism does not include a variable for time, there is no `time lag' (so
to speak) between the removal of an electron at one place and the addition of
another electron at a di�erent place in the system. Despite of the lack of a
temporal dimension, physicists nonetheless choose to give a dynamic interpre-
tation to the e�ect of the joint application of an annihilation and a creation
operator (never mind the absence of a dynamic component from the model):
they claim � perhaps: pretend � that what is `being modelled' is the movement
of an electron from the place where it was `annihilated' to the place where it
was (re-)`created'.

I have here given only the briefest sketch of the example of creation and
annihilation operators in many-body physics. What a closer analysis would
show is that the corresponding mathematical formalism is the combination of a
mathematical framework (operator algebra) with a fundamental physical theory
(quantum mechanics), in conjunction with additional assumptions and heuristic
rules that are neither entailed by fundamental theory nor tailored to any speci�c
empirical problem in particular. Such substantive assumptions and constraints
� including whatever theoretical justi�cation it might be possible to give for
them � are not always explicitly stated, but are often implicit, for example in
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the rules for manipulating symbolic representations of the mathematical objects
in question. For creation and annihilation operators, certain rules apply con-
cerning which combinations of operators can be substituted for others, most
obviously in the case of the anti-commutation relations. At the same time, as is
obvious in the example of how creation and annihilation operators are deployed
in order to model `dynamic' movement of electrons in a solid, mature mathemat-
ical formalism in physics also allow for a considerable degree of interpretative
�exibility. It is for this reason, I want to suggest, that mathematical formalisms
play a signi�cant role in the construction of scienti�c models.

4.3 Two contrast cases: `mathematical moulding' and `the

structuralist approach'

The speci�c character of mathematical formalisms, as outlined in the preceding
two subsections, can be delineated further by contrasting it with two related,
yet di�erent, philosophical conceptions of the role of mathematics in modelling.
Following their main proponents, I shall call these alternative conceptions `math-
ematical moulding' [Boumans 1999, p. 90f.] and the `structuralist' (ormapping)
approach (see [da Costa and French 2003] and references therein). It needs to
be emphasised that, by drawing contrasts between these three accounts of the
role of mathematics in science, I am not suggesting that they are necessarily mu-
tually exclusive. Rather, each emphasises di�erent formal aspects of the math-
ematics employed, and each is characterised by qualitative di�erences between
the kinds of theoretical activities involved in achieving model-based represen-
tation � i.e., between mathematical moulding, the mapping of structures, and
the deployment of mathematical formalisms. In particular, I hope to show that
mathematical formalisms occupy an interesting middle ground between more
`local' cases of mathematical moulding and the more `global' picture sketched
by the structuralist approach.

The term `mathematical moulding' is due to Marcel Boumans, who, in the
context of analysing business-cycle models in economics, de�nes it as follows:

Mathematical moulding is shaping the ingredients [of a model] in
such a mathematical form that integration is possible, and contains
two dominant elements. The �rst element is moulding the ingredient
of mathematical formalism in such a way that it allows the other
elements to be integrated. The second element is calibration, the
choice of the parameter values, again for the purpose of integrating
all the ingredients. [Boumans 1999, p. 90]

As Boumans sees it, model-builders in economics are typically confronted with
a diversity of `ingredients', which include `theoretical ideas, policy views, math-
ematisations of the [business] cycle, metaphors and empirical facts'. The mod-
ellers' main goal `in the context of discovery is the successful integration of those
items that satisfy the criteria of adequacy' [Boumans 1999, p. 67]. In such con-
texts of modelling, `mathematical moulding plays a speci�c role', namely: to
match a model to a speci�c empirical situation. Model-builders typically pursue
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`an adaptive strategy until all ingredients [are] integrated'; often, one �nds that
`in the integration process, �tuning� is essential': This �ne-tuning `is essential
to ensure that the mathematical representation has empirical signi�cance'. In
the particular case study, an essential part of mathematical moulding consist in
the models' parameter values being `chosen such that the model could precisely
mimic speci�c facts about the cycle' [Boumans 2005, p. 50].

The idea that models need to be `moulded' to �t speci�c empirical con-
texts coheres well with other approaches that draw their inspiration from case
studies of actual scienti�c practice. Thus Margaret Morrison, in a contribution
to the same volume that contains Boumans' 1999 paper, argues that `model
construction involves a complex activity of integration' [Morrison 1999, p. 44];
like Boumans, she elsewhere emphasises that `the proof or legitimacy of the
representation arises as a result of the model's performance in experimental,
engineering and other kinds of interventionist contexts' [Morrison 1998, p. 81].
A similar sentiment is expressed by Suárez when he writes that models are `in-
herently intended for speci�c phenomena' [Suárez 1999, p. 75]. What these
remarks indicate is that models are frequently employed in speci�c (often ex-
planatory) contexts, when a phenomenon cannot be adequately described, or
perhaps cannot even qualitatively accounted for, by (limiting cases of) funda-
mental theory. Hence, phenomenological models come to be seen as the rule,
rather than the exception, across much of science. However, while this shift in
perspective, from models as an intermediate step in applying theory to the world
to models as representations of speci�c phenomena, has generally sharpened an
awareness of how models are being used in actual scienti�c practice, I believe
it does not adequately capture the role of mathematics in achieving representa-
tion. `Mathematical moulding', with its goal of enforcing empirical adequacy of
a model by �ne-tuning its ingredients, appears to put too much emphasis on the
empirical performance of a model in a speci�c situation. The second element
identi�ed by Boumans � calibration as `the choice of the parameter values' �
conveys the connotation of `curve-�tting', which many model-builders seek to
avoid. Indeed, integrating `all the ingredients' in many cases of scienti�c mod-
elling may neither be feasible nor desirable; much model-building is motivated
by the recognition that the `adding of details with the goal of improving [...
the] model is self-defeating � such improvement is illusory' [Batterman 2002,
p. 22]. This is particularly salient in the case of what Robert Batterman calls
`minimal models', which are meant to shed light on the universality of certain
phenomena, such as the near-identical behaviour of various physical systems in
the vicinity of a critical point of a phase transition. What is needed, then, is
an elaboration not only of how mathematics provides ways of �tting a given
model to a speci�c empirical situation, but also of how it enables some models �
perhaps even the majority of mathematical models � to represent an entire class
of phenomena, and sometimes di�erent such classes altogether. Mathematical
formalisms are an obvious candidate for providing the requisite balance between
speci�city and generality.

Let us turn to the second contrast case, which, for want of a better designa-
tion, I shall refer to as `the structuralist approach'. I here have in mind a cluster
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of proposals, all of which attempt to make sense of the role of mathematics in
physics, and of the relation between theories and the kinds of models actually
used by scientists, in terms of an embedding of an � already mathematised �
theory T into a mathematical structure M. This embedding is construed in set-
theoretic terms, by positing the existence of a suitable homomorphism between
T and M. Typically, according to the structuralist proposal, this will take the
form of an isomorphism that maps T onto a substructure µ of M. Introducing
a formal calculus, on which T and µ are taken to be isomorphic models, and
assuming a way to patch this calculus up with the semantic resources for M,
then allows one to properly regard T as embedded into a larger structure �
most importantly, one that contains `surplus structure' (given that M is to be
understood as an extension of µ). [Redhead 1975, p. 87] What renders this
picture attractive, for the present argument, is its ability to make plausible how
mathematics � more speci�cally: the `surplus' mathematical structure that is
made available by embedding a theoretical structure into a larger mathematical
framework � may be of heuristic value, insofar as new mathematical resources
become available that may eventually suggest new theoretical developments.
The structuralist approach has since been extended and re�ned, most recently
through the in�uential `partial structures' programme (for a review and de-
fence, see [da Costa and French 2003]). Such re�nements are partly a response
to claims that a structuralist account (of the general kind sketched above) is
unable to account for the diversity of the kinds of models � including analo-
gies, iconic models, material models � that scientists actually deploy in their
everyday work. One move has been to relax some of the requirements of earlier
structuralist accounts, for example by demanding only partial identity between
models and situations and by allowing partial isomorphisms to take the place of
full isomorphisms. Some critics, however, have argued that, while partial struc-
tures and partial isomorphisms bring greater �exibility, they also are in `danger
of trivializing our representational relationships' [Pincock 2005b, p. 1254]; in
response, proponents of the partial structures approach have suggested that it
may be possible to appeal to heuristic factors in order to explain why one model
(or one partial isomorphism) rather than another was adopted. This is not the
place for a detailed discussion of the overall merits of either the `partial struc-
tures' approach or the criticism that has been levelled against the structuralist
approach more generally; instead, I want to argue that, irrespective of whether
such an approach can be successfully defended, relations between abstract struc-
tures do not exhaust the role of mathematics in the construction of scienti�c
models.

Even if one grants that there are no in-principle obstacles to giving a recon-
struction of models and theories in terms of relations between abstract struc-
tures, such an approach misses an important dimension of the model-building
process. The `hands-on' character of applying a mature mathematical formalism
in order to represent phenomena and physical systems seems strangely absent
from the world of relations between abstract structures.15 Mathematical for-

15This need not indicate a lack of interest in scienti�c practice generally, since within the
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malisms and equations, though no doubt part of `mathematics-at-large', are
actively used to predict, explain, and represent the behaviour of real physical
systems � mathematical modelling as an activity points outward to the world.
Robin Hendry and Stathis Psillos put this point nicely, if mildly polemically,
when they issue the following recommendation:

We should not be tempted to reify structure as something attributed
in our descriptions: to consider a thing under an abstract (or struc-
tural) description is neither to think of it as an abstract object, nor
to think of it as something that bears a structural relation to one.
Embedded in theories, mathematical equations can be used to make
sophisticated and abstract claims about real physical systems; the
representational cash value of mathematics, within science, must lie
in the truth-conditions of the claims it can be used to make about
them. [Hendry and Psillos 2007, p. 145].

While I shall not take issue with the structuralist approach as far as it goes,
I believe that the quote from Hendry and Psillos conveys a justi�ed sense of
dissatisfaction, insofar as the focus on mere structures and their relations ob-
scures the value of mathematics as something that is used, in speci�c ways that
are underdetermined by any structuralist account, in order to represent speci�c
physical phenomena and (classes of) physical systems. Mature mathematical
formalisms in physics, by contrast, typically include (often heuristic) rules and
strategies for modelling relevant aspects of phenomena and systems that fall
within the domain for which the formalism has been devised.

As I suggested at the beginning of this section, my goal in considering math-
ematical moulding and the structuralist approach as contrast cases to mathemat-
ical formalism was not to argue for any incompatibility between the latter and
either of the former two. Rather, I intended to situate mathematical formalism
� as an integral part of model-building � between the two. For, as I hope to
have made plausible, mathematical moulding and the structuralist approach lie
at opposite ends of a whole spectrum of conceptions of how mathematics applies
to the world. Loosely speaking, whereas mathematical moulding accounts for
the local �tting, or `�ne-tuning', of a model to speci�c empirical contexts, the
structuralist account takes a global account of how theories and models can be
embedded in `mathematics-at-large', without necessarily much concern for spe-
ci�c features of a given model beyond its `embeddability', as it were. Both the
local and the global roles of mathematics are important and interesting in their
own right. At the same time, there is ample room for intermediate positions
between the two ends of the spectrum de�ned by mathematical moulding and
the structuralist approach; it is this middle ground, I am suggesting, that is
occupied by mature mathematical formalisms in science.16

structuralist approach there has been a fair bit of discussion of the history of science, especially
in relation to theory change. Rather, what this indicates is that intertheory relations lend
themselves more easily to subsumption under a structuralist framework than does the activity
of model-building.

16In his book How Economists Model The World Into Numbers, Boumans hints at a similar
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4.4 Mathematical formalisms as inferential and interpre-

tative resources

On the view I am putting forward, when a mature mathematical formalism is
being deployed in a certain area of science, it already comes imbued with cer-
tain background assumptions regarding its application and interpretation. For
example, in the case of the creation and annihilation operators discussed above,
there are what one might call clear `guidelines' as to which combinations of
operators are admissible as potential representations of occurrent processes in
the many-body system to be described. Certain combinations of operators can
be immediately ruled out as `unphysical', simply on the basis that they can be
seen to violate basic constraints, such as conservation of particle number, which
are thought to govern the target system. Often, such determinations can be
made without recourse to elaborate derivations from theoretical �rst principles,
but are enshrined in the notational conventions deployed by the formalism it-
self. (As a primitive analogy, consider how one might be able to spot a severe
mistake in a mathematical derivation by checking that certain notational rules
� e.g., regarding signs or the use of parentheses � were violated.) Importantly,
the conventions of a particular mature mathematical formalism in a given scien-
ti�c context, such as the creation/annihilation operator formalism in quantum
many-body physics, add to, and are not merely the same as, the conventions
of mathematics-at-large; for example, they might encompass locally applicable
rules for the manipulation of the relevant mathematical symbols, where these
rules are derived from, or otherwise systematically connected to, certain theo-
retical or methodological commitments. Examples of theoretical commitments
that may be enshrined in a mature formalism would be certain fundamental
laws of nature that are thought to govern the behaviour of the target system
(and which one wants any model of that system to re�ect), or an ontological
commitment to the kinds of theoretical entities that a model may include as rel-
evant. A mature mathematical formalism, one might say, embodies theoretical
constraints and relationships in much the same way as, say, an orrery embodies
the dynamics of the planetary system it represents (see the discussion at the
end of Section 3.3.).17 The way in which certain constraints are incorporated
into a formalism need not always be explicit; many mature formalisms involve
an element of `self-regulating conventionality', where such conventionality `is
not the result of any explicit attempt to conventionalise a practice', but arises
from successive applications, for speci�c representational goals, in a way that is

role of mathematical formalism when he writes that `a mathematical formalism is sought that
is able to generate the relevant characteristics of the phenomena that should be explained
or described' [Boumans 2005, p. 58, italics added]. However, mathematical formalism is still
understood as `one of the ingredients that should be integrated' (ibid., p. 17), rather than as
an integrating force itself.

17While this is, of course, only an analogy, philosophers of mathematics, too, have recognised
the parallels between mathematics and activities and phenomena in the material world. Thus,
Imre Lakatos writes: `Mathematics, this product of human activity, �alienates itself� from the
human activity which has been producing it. It becomes a living, growing organism, that
acquires a certain autonomy from the activity which has produced it; it develops its own
autonomous laws of growth, its own dialectic.' [Lakatos 1976, p. 146]
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`self-perpetuating and in need of no explicit, external introduction' [Netz 1999,
p. 78f.].18

Mature formalisms of the sort discussed here are not con�ned to, and in-
deed will usually go beyond, the notational devices standardly used in pure
mathematics. In physics, especially, one �nds many examples of formalisms
that straddle the boundary between the mathematical and the merely diagram-
matic. Some of these, such as Dirac's `bra-ket' notation in quantum theory,
which describes quantum states using angle brackets and vertical bars as nota-
tional devices (thus allowing for the quick evaluation of expectation values, or
the spectral analysis of a Hamiltonian), are merely short-hand for more com-
plex mathematical expressions. Others, such as the formalism of Feynman di-
agrams, have been developed with the goal of representing a potentially indef-
inite number of speci�c kinds of physical processes. Thus, a Feynman diagram
in quantum electrodynamics consists of points (`vertices') and arrows (of dif-
ferent orientation) attached to the vertices, representing interacting electrons
and positrons, as well as wavy lines signifying photons that may be emitted or
absorbed. Enshrined in the formalism of Feynman diagrams are both rules for
the construction of new diagrams (e.g., `At every vertex, conservation of energy
and momentum among the interacting particles is required'), as well as for the
interpretation of the diagrams thus generated (e.g., `Lines in intermediate stages
in the diagram represent �virtual particles�, which may �temporarily� violate the
relativistic energy-momentum relation, but which are in-principle unobservable
if they do not'). While the formalism of Feynman diagrams was developed on
the basis of an overarching theoretical conception � according to which each
diagram is to be interpreted as a contribution to the total amplitude for a (mul-
tiply realizable) quantum process � it has taken on `a life of its own' in certain
areas of high-energy physics, where it has developed from a mere shorthand
to what one might call a notational `lingua franca'. As physicists are keen to
emphasise, `Feynman diagrams provide deep physical insight into the nature of
particle interactions', such as scattering processes, `in addition to their value as
a mathematical tool'.19

The gradual evolution from mere shorthands to powerful heuristic devices
and theoretical tools, is characteristic of mature mathematical formalisms. As
they undergo a process of elaboration, enrichment, and entrenchment, mature
formalisms come to embody theoretical, ontological, and methodological com-
mitments and assumptions; since these are enshrined in the formalism itself �
either in that the formalism allows only for some, but not all, possible pro-
cesses and mechanisms to be represented, or because their theoretical character
is cloaked behind purely notational rules � they are no longer readily obvious
to either the novice or the pro�cient user. At the same time as formalisms

18This is not to say that formalisms do not include explicit rules and conventions, only that
these do not exhaust the role of mature formalisms in scienti�c inquiry.

19See the entry `Feynman diagram' on Wikipedia (7 March 2010 version, accessed 16 April
2010). It seems fair to say that, while not an authoritative source of knowledge, Wikipedia
usually provides a good sense of what some of those who feel most strongly about a topic (in
this case: theoretical physicists) tend to think.
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constrain what may be represented (and how), they also function as inferen-
tial and interpretative resources.20 While the rules governing, say, creation and
annihilation operators shape how a many-body theorist will typically go about
modelling complex phenomena, e.g. in the form of simple additive contribu-
tions to the overall Hamiltonian, they also often suggest `concrete' interpreta-
tions of individual terms (as in the `hopping' of electrons from one lattice site
to another, discussed in Section 4.2.). It bears repeating that a mature mathe-
matical formalism (in the sense discussed here) � even though it may a�ord its
user considerable latitude in concrete applications � is infused with theoretical
commitments, which determine, at least in part, which physically meaningful
interpretations of a speci�c application are legitimate. This is precisely what
makes mature formalisms so convenient to their users, who would otherwise
have to settle on one amongst a plethora of prima facie permissible interpre-
tations. Mature mathematical formalisms, thus, provide a crucial link between
the realm of `unconstrained' mathematics and the theoretical conception (or
`scienti�c image') of the physical domain of which the target system is a part.
Michael Polanyi, in a di�erent context, has commented on the dual character
of mathematical formalism as both constraining and enabling, as well as on its
role as a provider of access to inferential resources. On the one hand, Polanyi
writes:

The process of reorganizing a conception for drawing new inferences
from it can be formalized, by accepting as inferential operations
certain rules for manipulating the symbols representing the states of
a�airs. [Polanyi 1962, p. 117]

On the other hand, routine formalization and acceptance of notational rules
associated with formalisms, may well be a precondition for systematic inquiry
into novel phenomena and explanations, since once it has been established, `a
mathematical formalism may be operated in ever new, uncovenanted ways, and
force on our hesitant minds the expression of a novel conception'. [Polanyi 1962,
p. 104] Mathematical formalisms, thus, not only occupy an interesting middle
ground between `global' ways of mathematically mapping the world-at-large and
`local' cases of mathematical moulding in concrete empirical contexts; they also
play a vital role in allowing us to go beyond routine methods, by constructing
new representational devices, thereby extending the reach of our representa-
tional practices to ever new domains.
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